bzoj 1833 数字计数|数位dp

又一类数位dp模板,直接贴代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>

#define md
#define ll long long
#define inf (int) 1e9
#define eps 1e-8
#define N
using namespace std;
ll mi[20];
struct data { ll a[15];} f[20][15];
data operator + (data a,data b)
{
 data ans;
 memset(ans.a,0,sizeof(ans.a));
 for (int i=0;i<=9;i++) ans.a[i]=a.a[i]+b.a[i];
 return ans;
}

void ycl()
{
 mi[0]=1;
 for (int i=1;i<=13;i++) mi[i]=mi[i-1]*10;
 for (int i=0;i<=9;i++) f[1][i].a[i]=1;
 for (int i=2;i<=12;i++)
   for (int j=0;j<=9;j++)
   {
    for (int k=0;k<=9;k++)
  {
   f[i][j]=f[i][j]+f[i-1][k];
    }
    f[i][j].a[j]+=mi[i-1];
   }

data dp(ll x)
{
 data ans; memset(ans.a,0,sizeof(ans.a));
 if (x==0) { return ans;}
 int len=13;
 while (mi[len-1]>x) len--; //printf("x: %lld len: %d\n",x,len);
 for (int i=1;i<len;i++)
   for (int j=1;j<=9;j++)
     ans=ans+f[i][j];
 int fir=x/mi[len-1];
 for (int i=1;i<fir;i++) ans=ans+f[len][i];
 x%=mi[len-1]; ans.a[fir]+=x+1;
 for (int i=len-1;i;i--)
 {
  fir=x/mi[i-1];
  for (int j=0;j<fir;j++) ans=ans+f[i][j];
  x%=mi[i-1]; ans.a[fir]+=x+1;
 }
 //ans.a[0]++;
 return ans;
}
int main()
{
 ll a,b;
 ycl();
 scanf("%lld%lld",&a,&b);
 data ans1=dp(a-1),ans2=dp(b);
 printf("%lld",ans2.a[0]-ans1.a[0]);
 for (int i=1;i<=9;i++) printf(" %lld",ans2.a[i]-ans1.a[i]);
 return 0;
}
 



 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值