最大差值 3627

最大差值
给定一个长度为 n 的非负整数序列 a1,a2,…,an。

你可以对该序列进行最多 k 次操作。

每次操作选择两个非 0 的元素 ai 和 aj,然后选择一个整数 c(0≤c≤ai),使得 ai 减少 c,aj 增加 c。

请问,在操作全部完成后,序列中的最大值和最小值之差是多少。

例如,如果初始序列为 [5,5,5,5] 而 k=1,则一种最优方案是将 a2 减少 5,将 a4 增加 5,得到序列 [5,0,5,10],这样最大值和最小值之差为 10。

再例如,如果序列中的所有元素都为 0,则无法进行任何操作,所以最大值和最小值之差也为 0。

输入格式
第一行包含整数 T,表示共有 T 组测试数据。

每组数据第一行包含整数 n 和 k。

第二行包含 n 个整数 a1,a2,…,an。

输出格式
每组数据输出一行,一个整数,表示可以得到的最大差值。

数据范围
对于前三个测试点,1≤n≤10。
对于全部测试点,1≤T≤1000,1≤k<n≤2×105,0≤ai≤109,每个输入的 T 组数据的 n 之和不超过 2×105。

输入样例:
2
4 1
5 5 5 5
3 2
0 0 0
输出样例:
10
0

这个题仔细分析,可以采用贪心的策略,k次操作,由于减掉的最大的数一定得小于任何一个数,一定把一个数字减到0,另一个数字完整加上这个 数字的全部,这样,我们每次选择把最大数加上次大数,次大数变为0,这样k次后的最大数与最小数字的差实际上是后面k+1个数字的和与0的差,也就是后面k+1个数的差,排个序贪心一下就可以。

#include<bits/stdc++.h>
using namespace std;

int T;
const int N=2e5+10,MX=1e9+10,MM=-1e9-10;
int ar[N];

typedef long long LL;
int main()
{
    scanf("%d", &T);

    while(T--){
        int n,k;

      
        scanf("%d%d", &n,&k);
        
        
        for(int i=0;i<n;i++){
            scanf("%d", &ar[i]);
        }
        sort(ar,ar+n);
        LL sum=0;

        for(int i=n-k-1;i<n;i++)sum+=ar[i];
       
        printf("%lld\n",sum);
        

    }
    system("pause");
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值