最优化问题——一维搜索(二)

本文深入探讨一维搜索方法,涵盖精确与非精确搜索两大类。精确搜索部分讲解了黄金分割法、斐波那契法、中点法及进退法;非精确搜索则聚焦于牛顿法、插值法及Shubert-Piyavskii方法。同时,引入Goldstein与Wolfe-Powell算法,旨在提高搜索效率。

最优化问题——一维搜索(二)

在前面的的文章最优化问题——一维搜索(一)中,我们主要介绍了一维搜索中精确搜索的缩小区间法,具体的算法包括黄金分割法,斐波那契法,中点法,以及确定初始区间的进退法。
在本篇文章中,我们主要介绍一维搜索的牛顿法和插值法以及非精确的一维搜索。

1. 牛顿法

1.1 牛顿的基本思路

与之前介绍的缩小区间法的思路不同,牛顿法使用的是函数逼近的基本原理,看过之前的非线性规划文章的读者可知,通过泰勒展开式,我们可以将函数变成一阶逼近和二阶逼近的形式。而在一维搜索中,利用插值函数来逼近所需要求解的函数,把插值函数的极小点作为迭代点。常见的算法包括三点二次插值,两点二次插值和三次插值多项式。

1.2 牛顿法的基本思路和公式推导

牛顿法是函数逼近的一个代表算法。首先,对于函数 φ ( λ ) φ(λ) φ(λ)进行二次的泰勒展开式:

φ ( λ ) = φ ( λ k ) + φ ′ ( λ k ) ( λ − λ k ) + 1 2 φ ′ ′ ( λ k ) ( λ − λ k ) 2 + O ( λ − λ k ) 2 φ(λ)=φ(λ_k)+φ'(λ_k)(λ-λ_k)+\frac{1}{2}φ''(λ_k)(λ-λ_k)^2+O(λ-λ_k)^2 φ(λ)=φ(λk)+φ(λk)(λλk)+21φ(λk)(λλk)2+O(λλk)2

这里,我们取二阶导数,省略高次项得到:

q k ( λ ) = φ ( λ k ) + φ ′ ( λ k ) ( λ − λ k ) + 1 2 φ ′ ′ ( λ k ) ( λ − λ k ) 2 q_k(λ)=φ(λ_k)+φ'(λ_k)(λ-λ_k)+\frac{1}{2}φ''(λ_k)(λ-λ_k)^2 qk(λ)=φ(λk)+φ(λk)(λλk)+21φ(λk)(λλk)2

下一步,我们使用 q k ( λ ) q_k(λ) qk(λ)作为原函数 φ ( λ k ) φ(λ_k) φ(λk)的逼近。当 φ ′ ′ ( λ k ) > 0 φ''(λ_k)>0 φ(λk)>0的时候,我们对 q k ( λ ) q_k(λ) qk(λ)求导,则其驻点就是极小点: q k ( λ ) q_k(λ) qk(λ)的一阶导数为:
q k ′ ( λ ) = φ ′ ( λ k ) ( λ − λ k ) + φ ′ ′ ( λ k ) ( λ − λ k ) = 0 q_k'(λ)=φ'(λ_k)(λ-λ_k)+φ''(λ_k)(λ-λ_k)=0 qk(λ)=φ(λk)(λλk)+φ(λk)(λλk)=0
进一步,我们给出对于第k+1轮的λ的更新公式为:
λ k + 1 = λ k − φ ′ ( λ k ) / φ ′ ′ ( λ k ) λ_{k+1}=λ_k-φ'(λ_k)/φ''(λ_k) λk+1=λkφ(λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值