最优化——一维搜索算法之二次插值算法

算法作用

用于一纬(元)函数f(x)在确定的区间内搜索极小点。

为什么使用该算法

因为低次多项式的极小点比较容易计算,所以在求一元函数f(x)的极小点时,常常利用一个低次多项式函数g(x)来逼近原目标函数f(x),然后以该低次多项式函数g(x)的极小点来近似原函数f(x)的极小点。通过反复使用该方法来得到满足给定精确度的值。

算法:

初始条件:给定原目标函数f(x),初始区间[a,c]。

1、求得f(a)、f(c)。

2、在[a,c]中间求一点b,使得f(b)<f(a) 且f(b)<f(c)。

3、通过这a、b、c三点可得一个二次多项式,然后可通过前面的已知的求得该二次多项式的极小点。极小点的通项表达式为(证明见 最优解通项表达式证明):

x*=-1/2 *

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值