算法作用
用于一纬(元)函数f(x)在确定的区间内搜索极小点。
为什么使用该算法
因为低次多项式的极小点比较容易计算,所以在求一元函数f(x)的极小点时,常常利用一个低次多项式函数g(x)来逼近原目标函数f(x),然后以该低次多项式函数g(x)的极小点来近似原函数f(x)的极小点。通过反复使用该方法来得到满足给定精确度的值。
算法:
初始条件:给定原目标函数f(x),初始区间[a,c]。
1、求得f(a)、f(c)。
2、在[a,c]中间求一点b,使得f(b)<f(a) 且f(b)<f(c)。
3、通过这a、b、c三点可得一个二次多项式,然后可通过前面的已知的求得该二次多项式的极小点。极小点的通项表达式为(证明见 最优解通项表达式证明):
x*=-1/2 *