POJ 2763 Housewife Wind (LCA+树状数组)

10W节点的树,10W次操作:

1,:询问两点距离;

2:修改一条边权。

解法:如果没有修改,那么dis(a,b) = dep(a) + dep(b) - dep(lca(a,b)) * 2,可以用rmqLCA来O(1)做到。

但是有修改的话,基本就可以无脑考虑log级别的算法像树状数组线段树什么的了。

记一个dfs时间戳:进入节点记一次,退出节点记一次,那么可以得到边的两个时间序in[id]和out[id],以及点的第一次进入的时间序idn[u]。

然后把树按照时间序展开成序列C,对于边i以及边权val[i],C[in[i]] += val[i],C[out[i]] -= val[i],

然后你会发现,求节点u到根的距离,就是sigma(C[i]),0<i<=idn[u],前缀和嘛,树状数组就可以了。

修改边权的话,就把C数组的in[i]和out[i]位置更新到新的值就可以了。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 101000,INF = 0x3f3f3f3f;
int n,nq,s,head[N],etot,dep[N],plca[N][20],in[N],out[N],val[N],C[N<<1],tim,idn[N];
struct edge {int v,id,next;}g[N<<1];
void add_edge(int u,int v,int id) {
        g[etot].v = v, g[etot].id = id, g[etot].next = head[u], head[u] = etot ++;
}
void dfs(int u,int fa,int deep) {
        dep[u] = deep;
        plca[u][0] = fa;
        for (int i = 1; i < 20; i ++)
                plca[u][i] = plca[u][i-1]==-1 ? -1 : plca[plca[u][i-1]][i-1];
        for (int i = head[u]; i != -1; i = g[i].next) {
                edge &e = g[i];
                if (e.v==fa) continue;
                in[e.id] = idn[e.v] = ++tim;
                dfs(e.v,u,deep+1);
                out[e.id] = ++tim;
        }
}
int lca(int a,int b) {
        if (dep[a]<dep[b]) swap(a,b);
        for (int i = 0; i < 20; i ++)
                if (dep[a]-dep[b]>>i&1) a = plca[a][i];
        if (a!=b) {
                for (int i = 19; i >= 0; i --)
                        if (plca[a][i] != plca[b][i]) a = plca[a][i], b = plca[b][i];
                a = plca[a][0];
        }
        return a;
}
void modify(int p,int dt) {
        for (int i = p; i <= tim; i += i&-i) C[i] += dt;
}
int query(int p) {
        int ret = 0;
        for (int i = p; i > 0; i -= i&-i) ret += C[i];
        return ret;
}
int main() {
        while (~scanf("%d%d%d",&n,&nq,&s)) {
                memset(head,-1,sizeof(head)); etot = 0;
                tim = 0;
                for (int i = 1; i <= n-1; i ++) {
                        int a,b,c;
                        scanf("%d%d%d",&a,&b,&c);
                        add_edge(a,b,i);
                        add_edge(b,a,i);
                        val[i] = c;
                }
                dfs(1,-1,0);
                memset(C,0,sizeof(C));
                for (int i = 1; i <= n-1; i ++) {
                        modify(in[i],val[i]);
                        modify(out[i],-val[i]);
                }
                while (nq--) {
                        int op,a,b;
                        scanf("%d",&op);
                        if (op==0) {
                                scanf("%d",&a);
                                printf("%d\n",query(idn[a])+query(idn[s])-query(idn[lca(a,s)])*2);
                                s = a;
                        } else {
                                scanf("%d%d",&a,&b);
                                int dt = b-val[a];
                                modify(in[a],dt);
                                modify(out[a],-dt);
                                val[a] = b;
                        }
                }
        }
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值