10W节点的树,10W次操作:
1,:询问两点距离;
2:修改一条边权。
解法:如果没有修改,那么dis(a,b) = dep(a) + dep(b) - dep(lca(a,b)) * 2,可以用rmqLCA来O(1)做到。
但是有修改的话,基本就可以无脑考虑log级别的算法像树状数组线段树什么的了。
记一个dfs时间戳:进入节点记一次,退出节点记一次,那么可以得到边的两个时间序in[id]和out[id],以及点的第一次进入的时间序idn[u]。
然后把树按照时间序展开成序列C,对于边i以及边权val[i],C[in[i]] += val[i],C[out[i]] -= val[i],
然后你会发现,求节点u到根的距离,就是sigma(C[i]),0<i<=idn[u],前缀和嘛,树状数组就可以了。
修改边权的话,就把C数组的in[i]和out[i]位置更新到新的值就可以了。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 101000,INF = 0x3f3f3f3f;
int n,nq,s,head[N],etot,dep[N],plca[N][20],in[N],out[N],val[N],C[N<<1],tim,idn[N];
struct edge {int v,id,next;}g[N<<1];
void add_edge(int u,int v,int id) {
g[etot].v = v, g[etot].id = id, g[etot].next = head[u], head[u] = etot ++;
}
void dfs(int u,int fa,int deep) {
dep[u] = deep;
plca[u][0] = fa;
for (int i = 1; i < 20; i ++)
plca[u][i] = plca[u][i-1]==-1 ? -1 : plca[plca[u][i-1]][i-1];
for (int i = head[u]; i != -1; i = g[i].next) {
edge &e = g[i];
if (e.v==fa) continue;
in[e.id] = idn[e.v] = ++tim;
dfs(e.v,u,deep+1);
out[e.id] = ++tim;
}
}
int lca(int a,int b) {
if (dep[a]<dep[b]) swap(a,b);
for (int i = 0; i < 20; i ++)
if (dep[a]-dep[b]>>i&1) a = plca[a][i];
if (a!=b) {
for (int i = 19; i >= 0; i --)
if (plca[a][i] != plca[b][i]) a = plca[a][i], b = plca[b][i];
a = plca[a][0];
}
return a;
}
void modify(int p,int dt) {
for (int i = p; i <= tim; i += i&-i) C[i] += dt;
}
int query(int p) {
int ret = 0;
for (int i = p; i > 0; i -= i&-i) ret += C[i];
return ret;
}
int main() {
while (~scanf("%d%d%d",&n,&nq,&s)) {
memset(head,-1,sizeof(head)); etot = 0;
tim = 0;
for (int i = 1; i <= n-1; i ++) {
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,i);
add_edge(b,a,i);
val[i] = c;
}
dfs(1,-1,0);
memset(C,0,sizeof(C));
for (int i = 1; i <= n-1; i ++) {
modify(in[i],val[i]);
modify(out[i],-val[i]);
}
while (nq--) {
int op,a,b;
scanf("%d",&op);
if (op==0) {
scanf("%d",&a);
printf("%d\n",query(idn[a])+query(idn[s])-query(idn[lca(a,s)])*2);
s = a;
} else {
scanf("%d%d",&a,&b);
int dt = b-val[a];
modify(in[a],dt);
modify(out[a],-dt);
val[a] = b;
}
}
}
return 0;
}