【论文阅读】SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

本文介绍了一种使用图卷积网络(GCN)进行半监督节点分类的方法。通过一阶谱图卷积近似,GCN可以直接编码图结构并利用监督损失函数进行训练,无需额外的图正则化项。实验在引用网络和知识图谱数据集上验证了该方法的有效性。
摘要由CSDN通过智能技术生成

本文在图结构数据上提出一种半监督学习方法。通过一种局部的一阶谱图卷积近似实现本文的网络结构,并在citation networks和一个知识图谱数据集(knowledge graph dataset)上进行了测试。

1. Introduction

考虑需要对一个图中的节点进行分类,并且只已知一小部分节点的类别。这个问题可以看作一个半监督图学习问题(where label information is smoothed over the graph via some form of explicit graph-based regularization),加入图 Laplacian 正则化项的损失函数写作:
在这里插入图片描述
其中, L 0 \mathcal{L}_0 L0表示有标签数据的监督误差, f ( ⋅ ) f(\cdot) f()表示诸如神经网络的可微分函数, X X X是一个包含节点特征向量 X i X_i Xi的矩阵, Δ = D − A \Delta=D-A Δ=DA表示无向图 G = ( V , E ) \mathcal{G=(V,E)} G=(V,E)的非归一化图Laplacian(unnormalized graph Laplacian)算子,这个图包含 N N N个节点 v i ∈ V v_i\in\mathcal{V} viV,边 ( v i , v j ) ∈ E (v_i,v_j)\in \mathcal{E} (vi,vj)E,邻接矩阵 A ∈ R N × N A\in\mathbb{R}^{N\times N} ARN×N,度矩阵 D i i = ∑ j A i j D_{ii}=\sum_j A_{ij} Dii=jAij。相当于通过上述正则化项约束:经过网络运算之后的结果,互联的节点应该尽量相近。

本文提出直接使用神经网络 f ( X , A ) f(X,A) f(X,A) 编码图结构,并使用监督损失函数项 L 0 \mathcal L_0 L0,避免加入正则项,并且,由于直接将邻接矩阵包含在网络中,使得网络可以自动根据邻接矩阵将损失值分配到各个节点,包括没有标签的节点。

2. Fast Approximate Convolutions on Graphs

考虑一个多层的图卷积网络(Graph Convolutional Network,GCN):
在这里插入图片描述
其中, A ~ = A + I N \tilde{A}=A+I_N A~=A+IN表示无向图的邻接矩阵加上self-connections, I N I_N IN为单位矩阵, D ~ i i = ∑ j A ~ i j \tilde{D}_{ii}=\sum_j \tilde{A}_{ij} D~ii=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值