大数据技术之Hive(五)

本文介绍了Hive中的函数使用,包括系统自带函数的查看和自定义UDF、UDAF、UDTF的开发步骤。详细讲解了如何创建、删除自定义函数,并提供了一个自定义函数的开发案例。此外,还探讨了Hive的压缩和存储,包括Snappy压缩支持、MapReduce和Reduce阶段的压缩配置,以及开启中间和最终输出的压缩。最后,讨论了Hive的存储格式,如TEXTFILE、ORC和Parquet,强调了列式存储的优势,并通过实验对比了不同存储格式的压缩比和查询速度。
摘要由CSDN通过智能技术生成

七 、函数

7.1 系统自带的函数

1)查看系统自带的函数

hive> show functions;
1
2)显示自带的函数的用法

hive> desc function upper;
1
3)详细显示自带的函数的用法

hive> desc function extended upper;
1
7.2 自定义函数

1)Hive 自带了一些函数,比如:max/min 等,但是数量有限,自己可以通过自定义 UDF

来方便的扩展。

2)当 Hive 提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义

函数(UDF:user-defined function)。

3)根据用户自定义函数类别分为以下三种:

(1)UDF(User-Defined-Function)

一进一出

(2)UDAF(User-Defined Aggregation Function)

聚集函数,多进一出

类似于:count/max/min

(3)UDTF(User-Defined Table-Generating Functions)

一进多出

如 lateral view explore()

4)官方文档地址

https://cwiki.apache.org/confluence/display/Hive/HivePlugins

5)编程步骤:

(1)继承 org.apache.hadoop.hive.ql.UDF

(2)需要实现 evaluate 函数;evaluate 函数支持重载;

(3)在 hive 的命令行窗口创建函数

  a)添加 jar

  add jar linux_jar_path

  b)创建 function,

  create [temporary] function [dbname.]function_name AS class_name;

(4)在 hive 的命令行窗口删除函数

Drop [temporary] function [if exists] [dbname.]function_name;

6)注意事项

(1)UDF 必须要有返回类型,可以返回 null,但是返回类型不能为 void;

7.3 自定义 UDF 函数开发案例

1)创建一个 java 工程,并创建一个 lib 文件夹

2)将 hive 的 jar 包解压后,将 apache-hive-1.2.1-bin\lib 文件下的 jar 包都拷贝到 java 工程中。

3)创建一个类

package com.atguigu.hive;
import org.apache.hadoop.hive.ql.exec.UDF;
public class Lower extends UDF {
public String evaluate (final String s) {
if (s == null) {
return null;
}
return s.toString().toLowerCase();
}
}

4)打成 jar 包上传到服务器/opt/module/jars/udf.jar

5)将 jar 包添加到 hive 的 classpath

hive (default)> add jar /opt/module/datas/udf.jar; 
1
6)创建临时函数与开发好的 java class 关联

hive (default)> create temporary function my_lower as "com.atguigu.hive.Lower"; 

7)即可在 hql 中使用自定义的函数 strip

hive (default)> select ename, my_lower(ename) lowername from emp;
1
八 、压缩和存储

8.1 Hadoop 源码编译支持 Snappy 压缩 
可直接使用别人编译好的 
8.2 Hadoop 压缩配置

8.2.1 MR 支持的压缩编码 

 


为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器,如下表所示 

 

 


压缩性能的比较 

 


http://google.github.io/snappy/

 

On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

8.2.2 压缩参数配置

要在 Hadoop 中启用压缩,可以配置如下参数(mapred-site.xml 文件中): 

 

 

 

 

8.3 开启 Map 输出阶段压缩

开启 map 输出阶段压缩可以减少 job 中 map 和 Reduce task 间数据传输量。具体配置如下:

案例实操:

1)开启 hive 中间传输数据压缩功能

 

hive (default)>set hive.exec.compress.intermediate=true;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>