以下涵盖了Python、Hadoop Streaming、C++和Go语言。这些示例展示了如何使用不同的编程语言和技术来实现MapReduce任务。
1. Python实现MapReduce
Python是一种非常流行的脚本语言,适合快速实现MapReduce任务。以下是一个简单的Python实现。
1.1 Map阶段
def map_function(line):
words = line.strip().split()
return [(word, 1) for word in words]
1.2 Reduce阶段
from collections import defaultdict
def reduce_function(key, values):
return (key, sum(values))
1.3 主函数
from multiprocessing import Pool
def map_reduce(input_file, num_processes=4):
with open(input_file, 'r') as f:
lines = f.readlines()
with Pool(num_processes) as pool:
map_results = pool.map(map_function, lines)
map_results = [item for sublist in map_results for item in sublist]
shuffled = defaultdict(list)
for key, value in map_results:
shuffled[key].append(value)
with Pool(num_processes) as pool:
reduce_results = pool.starmap(reduce_function, shuffled.items())
return reduce_results
if __name__ == "__main__":
input_file = 'input.txt'
results = map_reduce(input_file)
for key, value in results:
print(f"{
key}: {
value}")
2. Hadoop Streaming实现MapReduce
Hadoop Streaming允许使用任何可执行脚本或程序作为Mapper和Reducer。以下是一个使用Python脚本的Hadoop Streaming示例。
2.1 Mapper脚本 (mapper.py)
#!/usr/bin/env python
import sys
for line