非Java的MapReduce实现

以下涵盖了Python、Hadoop Streaming、C++和Go语言。这些示例展示了如何使用不同的编程语言和技术来实现MapReduce任务。

1. Python实现MapReduce

Python是一种非常流行的脚本语言,适合快速实现MapReduce任务。以下是一个简单的Python实现。

1.1 Map阶段
def map_function(line):
    words = line.strip().split()
    return [(word, 1) for word in words]
1.2 Reduce阶段
from collections import defaultdict

def reduce_function(key, values):
    return (key, sum(values))
1.3 主函数
from multiprocessing import Pool

def map_reduce(input_file, num_processes=4):
    with open(input_file, 'r') as f:
        lines = f.readlines()
    
    with Pool(num_processes) as pool:
        map_results = pool.map(map_function, lines)
    
    map_results = [item for sublist in map_results for item in sublist]
    
    shuffled = defaultdict(list)
    for key, value in map_results:
        shuffled[key].append(value)
    
    with Pool(num_processes) as pool:
        reduce_results = pool.starmap(reduce_function, shuffled.items())
    
    return reduce_results

if __name__ == "__main__":
    input_file = 'input.txt'
    results = map_reduce(input_file)
    for key, value in results:
        print(f"{
     key}: {
     value}")

2. Hadoop Streaming实现MapReduce

Hadoop Streaming允许使用任何可执行脚本或程序作为Mapper和Reducer。以下是一个使用Python脚本的Hadoop Streaming示例。

2.1 Mapper脚本 (mapper.py)
#!/usr/bin/env python
import sys

for line 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脚本无敌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值