文章目录
遍历二叉树
先序遍历
所谓先序遍历二叉树,指的是从根结点出发,按照以下步骤访问二叉树的每个结点:
-
访问当前结点;
-
进入当前结点的左子树,以同样的步骤遍历左子树中的结点;
-
遍历完当前结点的左子树后,再进入它的右子树,以同样的步骤遍历右子树中的结点;
先序遍历这棵二叉树的过程是:
访问根节点 1;
进入 1 的左子树,执行同样的步骤:
访问结点 2;
进入 2 的左子树,执行同样的步骤:
访问结点 4;
结点 4 没有左子树;
结点 4 没有右子树;
进入 2 的右子树,执行同样的步骤:
访问结点 5;
结点 5 没有左子树;
结点 5 没有右子树;
进入 1 的右子树,执行同样的步骤:
访问结点 3;
进入 3 的左子树,执行同样的步骤:
访问结点 6;
结点 6 没有左子树;
结点 6 没有右子树;
进入 3 的右子树,执行同样的步骤:
访问结点 7;
结点 7 没有左子树;
结点 7 没有右子树;
1 2 4 5 3 6 7
递归先序遍历二叉树
观察整个先序遍历二叉树的过程会发现,访问每个结点的过程都是相同的,可以用递归的方式实现二叉树的先序遍历。
对于顺序表存储的二叉树,递归实现先序遍历二叉树的 C 语言代码为:
void PreOrderTraverse(BiTree T, int p_node) {
//根节点的值不为 0,证明二叉树存在
if (T[p_node]) {
printf("%d ", T[p_node]);
//先序遍历左子树
if ((2 * p_node + 1 < NODENUM) && (T[2 * p_node + 1] != 0)) {
PreOrderTraverse(T, 2 * p_node + 1);
}
//最后先序遍历右子树
if ((2 * p_node + 2 < NODENUM) && (T[2 * p_node + 2] != 0)) {
PreOrderTraverse(T, 2 * p_node + 2);
}
}
}
对于链表存储的二叉树,递归实现先序遍历二叉树的 C 语言代码为
void PreOrderTraverse(BiTree T) {
//如果二叉树存在,则遍历二叉树
if (T) {
printf("%d",T->data); //调用操作结点数据的函数方法
PreOrderTraverse(T->lchild);//访问该结点的左孩子
PreOrderTraverse(T->rchild);//访问该结点的右孩子
}
}
非递归先序遍历二叉树
我们知道,递归的底层实现借助的是栈存储结构。所谓先序遍历二叉树的非递归方式,其实就是自己创建一个栈,模拟递归的过程实现二叉树的先序遍历。
对于顺序表存储的二叉树,非递归实现先序遍历二叉树的 C 语言代码为:
//全局变量,记录栈顶的位置
int top = -1;
//前序遍历使用的入栈函数
void push(BiTree a, int elem) {
a[++top] = elem;
}
//弹栈函数
void pop() {
if (top == -1) {
return;
}
top--;
}
//拿到栈顶元素
int getTop(BiTree a) {
return a[top];
}
//先序遍历顺序表中的完全二叉树
void PreOrderTraverse(BiTree Tree) {
//模拟栈,记录入栈结点所在顺序表中的下标
int ad[NODENUM] = {
0 };
int p;
//根节点所在的顺序表下标先入栈
push(ad,0);
//直到栈中为空
while (top != -1)
{
//取出一个下标
p = getTop(ad);
pop(ad);
//判断当前下标是否超出结点的总数
while (p < NODENUM)
{
//输出 p 下标处存储的结点值
printf("%d ", Tree[p]);
//找到该结点的右孩子,该它的数组下标入栈
if ((2 * p + 2 < NODENUM) && (Tree[2 * p + 2] != 0)) {
push(ad, 2 * p + 2);
}
//找到 p 下标结点的左孩子,并继续遍历
p = 2 * p + 1;
}
}
}
对于链表存储的二叉树,非递归实现先序遍历二叉树的 C 语言代码为:
//全局变量,记录栈顶的位置
int top = -1;
//前序遍历使用的进栈函数
void push(BiTree* a, BiTree elem) {
a[++top] = elem;
}
//弹栈函数
void pop() {
if (top == -1) {
return;
}
top--;
}
//拿到栈顶元素
BiTNode* getTop(BiTree* a) {
return a[top];
}
//先序遍历二叉树
void PreOrderTraverse(BiTree Tree) {
BiTNode* a[20];//定义一个顺序栈
BiTNode* p;//临时指针
push(a, Tree);//根结点进栈
while (top != -1) {
p = getTop(a);//取栈顶元素
pop();//弹栈
while (p) {
printf("%d ", p->data);//调用结点的操作函数
//如果该结点有右孩子,右孩子进栈
if (p->rchild) {
push(a, p->rchild);
}
p = p->lchild;//一直指向根结点最后一个左孩子
}
}
}
中序遍历
二叉树的中序遍历,指的是从根结点出发,按照以下步骤访问二叉树中的每个结点:
-
先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;
-
访问当前结点;
-
最后进入当前结点的右子树,以同样的步骤遍历右子树中的结点。
中序遍历这棵二叉树的过程是:
进入结点 1 的左子树,访问左子树中的结点;
进入结点 2 的左子树,访问左子树中的结点;
试图进入结点 4 的左子树,但该结点没有左子树;
访问结点 4;
试图进入结点 4 的右子树,但该结点没有右子树;
访问结点 2;
进入结点 2 的右子树,访问右子树中的结点;
试图进入结点 5 的左子树,但该结