【C语言 数据结构】二叉树的遍历

遍历二叉树

在这里插入图片描述


先序遍历

所谓先序遍历二叉树,指的是从根结点出发,按照以下步骤访问二叉树的每个结点:

  • 访问当前结点;

  • 进入当前结点的左子树,以同样的步骤遍历左子树中的结点;

  • 遍历完当前结点的左子树后,再进入它的右子树,以同样的步骤遍历右子树中的结点;

先序遍历这棵二叉树的过程是:

访问根节点 1;
进入 1 的左子树,执行同样的步骤:
    访问结点 2;
    进入 2 的左子树,执行同样的步骤:
        访问结点 4;
        结点 4 没有左子树;
        结点 4 没有右子树;
    进入 2 的右子树,执行同样的步骤:
        访问结点 5;
        结点 5 没有左子树;
        结点 5 没有右子树;
进入 1 的右子树,执行同样的步骤:
    访问结点 3;
    进入 3 的左子树,执行同样的步骤:
        访问结点 6;
        结点 6 没有左子树;
        结点 6 没有右子树;
    进入 3 的右子树,执行同样的步骤:
        访问结点 7;
        结点 7 没有左子树;
        结点 7 没有右子树; 

1 2 4 5 3 6 7


递归先序遍历二叉树

观察整个先序遍历二叉树的过程会发现,访问每个结点的过程都是相同的,可以用递归的方式实现二叉树的先序遍历。

对于顺序表存储的二叉树,递归实现先序遍历二叉树的 C 语言代码为:

void PreOrderTraverse(BiTree T, int p_node) {
   
    //根节点的值不为 0,证明二叉树存在
    if (T[p_node]) {
   
        printf("%d ", T[p_node]);
        //先序遍历左子树
        if ((2 * p_node + 1 < NODENUM) && (T[2 * p_node + 1] != 0)) {
   
            PreOrderTraverse(T, 2 * p_node + 1);
        }
        //最后先序遍历右子树
        if ((2 * p_node + 2 < NODENUM) && (T[2 * p_node + 2] != 0)) {
   
            PreOrderTraverse(T, 2 * p_node + 2);
        }
    }
}

对于链表存储的二叉树,递归实现先序遍历二叉树的 C 语言代码为

void PreOrderTraverse(BiTree T) {
   
    //如果二叉树存在,则遍历二叉树
    if (T) {
   
        printf("%d",T->data); //调用操作结点数据的函数方法
        PreOrderTraverse(T->lchild);//访问该结点的左孩子
        PreOrderTraverse(T->rchild);//访问该结点的右孩子
    }
}

非递归先序遍历二叉树

我们知道,递归的底层实现借助的是栈存储结构。所谓先序遍历二叉树的非递归方式,其实就是自己创建一个栈,模拟递归的过程实现二叉树的先序遍历。

对于顺序表存储的二叉树,非递归实现先序遍历二叉树的 C 语言代码为:

//全局变量,记录栈顶的位置
int top = -1;
//前序遍历使用的入栈函数
void push(BiTree a, int elem) {
   
    a[++top] = elem;
}
//弹栈函数
void pop() {
   
    if (top == -1) {
   
        return;
    }
    top--;
}
//拿到栈顶元素
int getTop(BiTree a) {
   
    return a[top];
}
//先序遍历顺序表中的完全二叉树
void PreOrderTraverse(BiTree Tree) {
   
    //模拟栈,记录入栈结点所在顺序表中的下标
    int ad[NODENUM] = {
    0 };
    int p;
    //根节点所在的顺序表下标先入栈
    push(ad,0);
    //直到栈中为空
    while (top != -1)
    {
   
        //取出一个下标
        p = getTop(ad);
        pop(ad);
        //判断当前下标是否超出结点的总数
        while (p < NODENUM)
        {
   
            //输出 p 下标处存储的结点值
            printf("%d ", Tree[p]);
            //找到该结点的右孩子,该它的数组下标入栈
            if ((2 * p + 2 < NODENUM) && (Tree[2 * p + 2] != 0)) {
   
                push(ad, 2 * p + 2);
            }
            //找到 p 下标结点的左孩子,并继续遍历
            p = 2 * p + 1;
        }
    }
}

对于链表存储的二叉树,非递归实现先序遍历二叉树的 C 语言代码为:

//全局变量,记录栈顶的位置
int top = -1;
//前序遍历使用的进栈函数
void push(BiTree* a, BiTree elem) {
   
    a[++top] = elem;
}
//弹栈函数
void pop() {
   
    if (top == -1) {
   
        return;
    }
    top--;
}
//拿到栈顶元素
BiTNode* getTop(BiTree* a) {
   
    return a[top];
}
//先序遍历二叉树
void PreOrderTraverse(BiTree Tree) {
   
    BiTNode* a[20];//定义一个顺序栈
    BiTNode* p;//临时指针
    push(a, Tree);//根结点进栈
    while (top != -1) {
   
        p = getTop(a);//取栈顶元素
        pop();//弹栈
        while (p) {
   
            printf("%d ", p->data);//调用结点的操作函数
            //如果该结点有右孩子,右孩子进栈
            if (p->rchild) {
   
                push(a, p->rchild);
            }
            p = p->lchild;//一直指向根结点最后一个左孩子
        }
    }
}

中序遍历

二叉树的中序遍历,指的是从根结点出发,按照以下步骤访问二叉树中的每个结点:

  • 先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;

  • 访问当前结点;

  • 最后进入当前结点的右子树,以同样的步骤遍历右子树中的结点。

在这里插入图片描述
中序遍历这棵二叉树的过程是:

进入结点 1 的左子树,访问左子树中的结点;
    进入结点 2 的左子树,访问左子树中的结点;
        试图进入结点 4 的左子树,但该结点没有左子树;
        访问结点 4;
        试图进入结点 4 的右子树,但该结点没有右子树;
    访问结点 2;
    进入结点 2 的右子树,访问右子树中的结点;
        试图进入结点 5 的左子树,但该结
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值