成对匹配算法总结

现有的基于特征的匹配基本分为两大类。第一类基于概率图模型,特征匹配和成对特征一致性被整合成一元的成对的估计函数。概率图模型中的常见松弛是光谱宽松,将离散点松弛到连续域中进行计算。第二种策略是用刚性变换拟合一系列对应的特征,通过对不正确的特征对应进行了强约束来优化结果。

1图匹配

图匹配涉及建立它们的顶点集之间的对应关系,并同时考虑边集之间的一致性。图匹配相对于寻找鲁棒性的刚性拟合解而言,添加了更多的约束。该问题的难点在于目标函数的非凸性和解空间的离散性,使得人们无法在有效的时间内寻找到一个全局最优解。

一个带n个节点的图可以表示为一个二元组 ,其中 分别表示该图的节点集合和边集合。一个图也可以表示为一个对称的邻接矩阵 ,其中 当且仅当节点  之间存在一条边。给定两个图 ,其节点数分别为n1和n2。概率图匹配问题可以描述为,在两个图之间寻找一个节点对应关系 ,以最大化图属性和结构的一致性:

                                                              (15)

其中 表示节点 节点之间的一致性度量,而 表示图 中边(i1,j1)与图 中边(i2,j2)之间的一致性度量。分配矩阵X代表了匹配结果,其中 当且仅当节点 匹配到节点

通用的图匹配模型表示为:

                                                                                          (16)

其中 是分配矩阵X的向量形式, 是对应的亲和力矩阵定义为:

                                                            (17)

该问题的难点在于目标函数的非凸性和解空间的离散性,通常采用松弛的方法求近似解。常见基于函数松弛、基于约束松弛、基于离散搜索三种方式。

1.1基于函数松弛的方法

1.图嵌入方法:

图嵌入方法主要是通过利用一些嵌入方法等技术将图的顶点映射到特征空间,然后利用特征空间的点集匹配方法,如半正定规划、聚类等,实现特征空间中的顶点的匹配,来近似地完成图顶点的匹配。

常用的嵌入方法有:流形嵌入、谱嵌入、等距嵌入、子模式嵌入、原型嵌入等。将图节点嵌入到高维特征空间,进而将图匹配问题转换为特征空间中的点集匹配问题。

2.二部图匹配:

二部图匹配方法仅考虑优化过程中的局部边缘结构,而不需要获取图之间的全局一致性。这种方法的主要思想是通过将局部边缘结构编码为单个节点,将图形编辑距离的难题转换为线性分配问题。可以插入,删除和替换节点和边缘,但是这些编辑操作以相互独立的方式处理。二部图匹配算法通过对节点局部结构信息进行编码,将图编辑距离转换为线性分配问题来获得高计算效率,但是全局结构的缺失通常会损害其匹配精度。

1.2基于约束松弛的方法

1.连续优化:

由于图匹配本质上是离散优化问题,有一种解法是将其松弛到连续域,获得一个连续域上的最优解,然后重新将其投影到离散域中。

经典解法是Leordeanu等提出的基于谱松弛的方法。该方法建立一个新的分配关系图,其节点表示潜在的匹配关系,其边的权重表示潜在匹配关系之间的成对一致性。通过计算分配关系图的亲和力矩阵的主特征向量获得该松弛模型的全局最优解。之后有些研究通过将一对一或一对多映射约束(表示为仿射约束)编码到频谱分解;在亲和力矩阵上应用双原型归一化;提出拉格朗日松弛匹配法等,减少匹配误差并提高整体匹配性能。

基于连续域优化的算法在优化过程中放弃了的图匹配问题的离散约束,因此需要后投影步骤来将连续域的解离散化。

2.路径流:

近几年一项突出的工作是称为“路径流”的图匹配算法。Zaslavskiy【11】等将图匹配重新描述为凸凹松弛过程(CCRP)问题,然后通过在两个更简单的松弛函数(凸松弛和凹松弛)之间进行插值来求解。该算法从初始凸松弛函数的最优解出发,通过逐步提高插值目标函数的非凸性从而渐进地将初始解投影到离散空间获得最终解。后来,Liu和Qiao【12】提出了渐进式非凸凹过程(GNCCP),证明它等效地实现了部分置换矩阵的CCRP。GNCCP为CCRP提供了一种更简单的实现方法,无需明确地涉及特定的凸、凹松弛函数。

最近,Wang【13】等针对“路径流”这一类图匹配算法存在的计算复杂度较高的问题和奇点问题,提出了自适应分支路径流算法,在计算效率和解性能两个维度对原有路径流算法进行了提升。

3.稀疏模型:

图匹配问题的最优解是离散的、二元的,因此本质上是稀疏的。稀疏约束匹配方法旨在通过放弃离散约束而增加稀疏约束来获得匹配问题的一个稀疏优化解。稀疏可以看作是离散的一种近似,因此稀疏解可以看作是一种近似离散解。

最近的研究出现了一些图匹配选择问题的稀疏优化模型。这些稀疏匹配模型的主要思想是尝试在L1范数下优化特征匹配(匹配选择)目标约束并且可以为问题生成稀疏解决方案,从而通过使用解决方案的非零条目自然地进行匹配选择。然而,通过这些算法获得的解决方案的稀疏性通常是不可控制的,因此通常还需要后离散化步骤来保证获得最终的离散解决方案。

1.3基于离散搜索的方法

除了基于目标函数松弛或约束松弛的近似求解策略,还有一些纯粹的离散方法来直接在离散空间中搜索解。这些方法可以生成遵循离散仿射映射约束的解决方案,因此不需要后优化步骤。

Yan等人【14】提出了超图匹配的离散方法。该方法采用迭代过程将高阶指派问题近似为一阶线性指派问题。在每次迭代中,采用梯度分配方法(例如匈牙利方法)进行离散优化,以在整数域中找到最优分配矩阵。这种“离散”求解器相对于“软匹配”方法省去了启发式后舍入步骤,在实验中展现了其计算性能上的优势。后来,Yan等人在【15】中理论上证明了该方法的收敛性,设计了一种自适应松弛机制,确保提出的离散方法在适当的条件下收敛于一个固定解。Adamczewski等人【16】将图匹配问题转化为相应关联图的等效加权最大团问题,提出了软鼓励的惩罚关联图框架,直接在离散解空间中搜索满足一对一约束的解。其于上述框架,采用禁忌搜索作为优化技术,利用搜索历史在寻找最优解的同时做出更多战略决策,从而在一定程度上避免陷入局部最优解。

基于离散搜索的方法绕过了上面提到的解空间松弛问题,但是它们的搜索效果并不是很好,因为一对一的匹配约束显著地限制了这些方法中可能的移动。因而,离散搜索方法的最优性很大程度上取决于算法的初始化。

2鲁棒拟合

鲁棒拟合主要是用刚性变换拟合一系列对应的特征,通过对不正确的特征对应进行强约束来优化结果,尽可能排除离群值的影响。最经典的算法是RANSAC算法。还有Theil-Sen回归、Huber回归。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值