http://acm.hdu.edu.cn/showproblem.php?pid=2544
早就想做这个最短路了,但是一直在那纠结着,这个题目可以用邻接矩阵做,但是邻接矩阵的限制很大点最多只能有300个,所以想想还是搞定邻接表好!!
静态邻接表关键是在于它的储存!!
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
int n,m;
int dist[105],hand[105],flag[105]; //flag为标记该点是否被走过,hand是静态邻接表的头,dist存放从1至n的最短距离
#define INF 0xffffff;
struct edges
{
int to,val,next;
}edge[100005]; //edge数组为存放边的内容,为静态邻接表的一部分,next中存放的实质上是edge中id,但是这个id存放在hand数组中
struct node
{
int s,law;
friend bool operator<(const node &a,const node &b)
{
if(a.law==b.law)
return a.s>b.s;
return a.law>b.law;
}
}; //优先队列中的结构体
priority_queue<node> Q;
void dijkstra()
{
node temp,next;
int i;
while(!Q.empty())
{
temp=Q.top();
Q.pop();
if(flag[temp.s]==1) //判断是否走过
continue;
flag[temp.s]=1;
i=hand[temp.s];
while(i!=-1)
{
if(flag[edge[i].to]==0&&temp.law+edge[i].val<dist[edge[i].to]) //判断edge[i].to这个点有没有走过,并判断是否修改
{
dist[edge[i].to]=temp.law+edge[i].val;
next.s=edge[i].to;
next.law=dist[edge[i].to];
Q.push(next);
}
i=edge[i].next;
}
}
}
int main()
{
int i;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0)
break;
memset(hand,-1,sizeof(hand));
memset(flag,0,sizeof(flag));
for(i=1;i<=n;i++)
{
dist[i]=INF;
}
int from,to,val;
for(i=0;i<m;i++)
{
scanf("%d%d%d",&from,&to,&val);
edge[i*2].next=hand[from];
hand[from]=i*2;
edge[i*2].to=to;
edge[i*2].val=val;
edge[i*2+1].next=hand[to];
hand[to]=i*2+1;
edge[i*2+1].to=from;
edge[i*2+1].val=val; //题目给出的边是双向的所以可以从to到from
}
dist[1]=0;
node temp;
temp.s=1;
temp.law=0;
Q.push(temp);
dijkstra();
printf("%d\n",dist[n]);
}
return 0;
}