采用动态规划解决最佳加法表达式比较容易,难点在于高精度计算,本文前部分给出了解决该问题的基本方法,转载了高精度方法。
一、题目描述
描述
给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值。例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36
输入
有不超过15组数据
每组数据两行。第一行是整数m,表示有m个加号要放( 0<=m<=50)
第二行是若干个数字。数字总数n不超过50,且 m <= n-1
输出
对每组数据,输出最小加法表达式的值
样例输入
2
123456
1
123456
4
12345
样例输出
102
579
15
提示
要用到高精度计算,即用数组来存放long long 都装不下的大整数,并用模拟列竖式的办法进行大整数的加法。
二、问题分析
将m个加号插入到n个数中,求能得到的最小表达式结果。可以先考虑把最后一个加号插入到某个数之后,该数一定在m到n-1之间,因为剩余m-1个加号至少需要m个数来放置,所以最后一个加号的位置必然在m之后,毫无疑问最后一个加号最多放在倒数第二个数(n-1)之后。
将最后一个加号放到第k个数之后形成的表达式值由两部分组成:
(1)前m-1个加号放到前k个数中形成得到的表达式值 minVal(m-1,k)
(2)第k+1字符到最后一个字符组成的数值,Num(k+1,n)
没有加号时,结果只由第二部分组成
所以
最小加法表达式 minVal(m,n) = Min{ minVal(m-1,k) + Num(k+1,n) } ( k = m … n-1)
三、源代码
1.先给出我的非高精度算法,主要看思路
// 最佳加法表达式,非高精度版
//
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
int main()
{
int m = 0;
int n = 0;
string numLine; //输入的数字序列
int Num[50][50];//Num[i][j]表示numLine序列第i个到第j个数字连接成的数的值
int minVal[50][50];//minVal[i][j]表示将i个加号放到j个数字中能得到的最小表达式值
while (cin >> m )
{
cin >> numLine;
n = numLine.length();
for (int i = 1; i <= n; ++i)//将第i、j间的连续字符序列转变为一个数值
{
Num[i][i] = numLine[i - 1] - '0';
for (int j = i + 1; j <= n; ++j) {
//numline的下标从0开始取,第j个字符的下标为j-1
Num[i][j] = Num[i][j - 1] * 10 + numLine[j - 1] - '0';
}
}
memset(minVal, 0x3f, sizeof(minVal));
for (int i = 1; i <= m; ++i)//i 个 加号
{
for (int j = i; j <= n; ++j)//j个数字,数字个数不能少于加号个数
//需要取j=i,不然算不对
{
minVal[0][j] = Num[1][j];//没有加号的情形
for (int k = i; k < j; ++k)//最后一个加号的位置,循环
minVal[i][j] = min(minVal[i][j], minVal[i - 1][k] + Num[k + 1][j]);
}
}
cout << minVal[m][n]<<endl;
}
return 0;
}