TensorFlow
文章平均质量分 78
何雷
小码农,辛勤耕耘每一寸土地
展开
-
yolov3 c++ tensorflow inference
cv_data.image = cv::imread(image_path, -1); cv_data.image_nms = cv_data.image.clone(); data_config.scale = std::min(1.0*data_config.iw/data_config.w, 1.0*data_config.ih/data_config.h); data_config.nw = int(data_config.scale * data_config.w);.原创 2020-10-13 14:33:35 · 474 阅读 · 1 评论 -
学习Tensorflow,使用源码安装
PC上装好Ubuntu系统,我们一步一步来讲解如何使用源码安装tensorflow?(我的Ubuntu系统是15.10)根据你的系统型号选择相应的cuda版本下载 https://developer.nvidia.com/cuda-downloads 我选的是cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb右原创 2016-04-30 13:52:39 · 32963 阅读 · 8 评论 -
TensoFlow实现条件语句
import tensorflow as tfa = tf.constant(20)b = tf.constant(10)result1 = tf.cond(a > b, lambda: a, lambda: b)result2 = tf.cond(a < b, lambda: a, lambda: b)# Initialize all the variables (includi原创 2016-11-11 10:40:22 · 10054 阅读 · 1 评论 -
正则化方法:L1和L2 regularization、数据集扩增、dropout
原文转自:http://blog.csdn.net/u012162613/article/details/44261657本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法。(本文会不断补充)正则化方法:防止过拟合,提高泛化能力在训练数据不够多时,或者overtraini转载 2016-11-16 15:03:55 · 5797 阅读 · 0 评论 -
学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等)。当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优。目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特原创 2016-11-14 16:20:58 · 57168 阅读 · 30 评论 -
学习TensorFlow,生成tensorflow输入输出的图像格式
TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow;也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取。下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出。原创 2016-05-09 17:07:35 · 32017 阅读 · 7 评论 -
查看TensorFlow checkpoint文件中的变量名和对应值
转自:http://stackoverflow.com/questions/38218174/how-can-find-the-variable-names-that-saved-in-tensorflow-checkpoint/38226516#38226516from tensorflow.python import pywrap_tensorflowcheckpoint_path = os转载 2017-02-22 17:30:12 · 18778 阅读 · 2 评论 -
GAN: Generative Adversarial Nets
谈到生成对抗网络,我们首先想到的是Goodfellow的开山之作:Generative Adversarial Nets。今天,我们就来谈谈这篇文章。针对一个估计数据分布的问题,当模型的类别已知,我们一般采用极大似然方法进行估计。然而,当模型的类别未知或数据分布过于莫杂时,我们如何近似得到数据的俄分布呢?我想,对抗网络的提出给了我们一些思路。生成对抗网络,由两个网络组成,即生成器和判别器,在Goo原创 2017-04-17 16:20:38 · 3968 阅读 · 1 评论 -
TensorFlow的几点小知识
1、调节GPU占比TensorFlow比较贪心,默认会占用全部的GPU的资源。可以通过以下方式调节:config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.9session = tf.Session(config=config)另外,可以按需分配GPU资源config = tf.Config原创 2017-11-16 11:24:11 · 2854 阅读 · 0 评论 -
TensorFlow发布Eager,便于Debug!
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md原创 2017-11-19 16:00:56 · 7079 阅读 · 0 评论 -
Why is FLAGS necessary?
source url: https://stackoverflow.com/questions/43437590/why-is-flags-necessaryUsually FLAGS are used to pass command line arguments into your program. E.g.import tensorflow as tffs = tf.app.flagsfs转载 2018-01-24 11:16:55 · 2122 阅读 · 0 评论 -
TensorFlow安装配置,茫茫人海中一瞥
深度学习的框架,我们熟知的有caffe,torch和convnet。最近,Google又搞了一个TensorFlow,已经开源:http://www.tensorflow.org/。据说,谷歌的深度学习研究人员都在用TensorFlow,未来也将在机器学习产品中继续使用。那么,作为小码农的我需要紧跟时代的步伐啊,探索一下这个新家伙。原创 2015-11-12 16:20:49 · 28076 阅读 · 9 评论 -
TensorFlow与OpenCV,读取图片,进行简单操作并显示
TensorFlow与OpenCV,读取图片,进行简单操作并显示原创 2016-09-01 16:00:42 · 25373 阅读 · 3 评论 -
tf.app.run()
在很多TensorFlow公布的Demo中,都有这样的代码存在,如下,这是干什么的呢?if __name__ == "__main__": tf.app.run() 我们来看一下源代码:# tensorflow/tensorflow/python/platform/default/_app.py# Copyright 2015 Google Inc. All Rights原创 2016-07-08 14:12:01 · 47214 阅读 · 4 评论 -
学习TensorFlow,线性回归模型
学习TensorFlow,在MNIST数据集上建立softmax回归模型并测试一、代码fromtensorflow.examples.tutorials.mnist import input_datamnist =input_data.read_data_sets('MNIST_data', one_hot=True)import tensorflow astfsess =tf.In原创 2016-03-16 18:47:55 · 4546 阅读 · 0 评论 -
学习TensorFlow,多层卷积神经网络
学习TensorFlow,多层卷积神经网络原创 2016-03-17 17:09:22 · 9830 阅读 · 5 评论 -
学习TensorFlow,concat连接两个(或多个)通道
深度学习中,我们经常要使用的技术之一,连接连个通道作为下一个网络层的输入,那么在tensorflow怎么来实现呢?原创 2016-05-10 16:05:05 · 54161 阅读 · 0 评论 -
Simple tutorial for using TensorFlow to compute a linear regression
Simple tutorial for using TensorFlow to compute a linear regression转载 2016-04-18 07:57:06 · 1212 阅读 · 0 评论 -
Simple tutorial for using TensorFlow to compute polynomial regression
Simple tutorial for using TensorFlow to compute polynomial regression转载 2016-04-18 08:12:23 · 1918 阅读 · 0 评论 -
学习TensorFlow,打印输出tensor的值
在学习TensorFlow的过程中,我们需要知道某个tensor的值是什么,这个很重要,尤其是在debug的时候。也许你会说,这个很容易啊,直接print就可以了。其实不然,print只能打印输出shape的信息,而要打印输出tensor的值,需要借助class tf.Session, class tf.InteractiveSession。因为我们在建立graph的时候,只建立tensor的结构原创 2016-06-24 15:01:57 · 108565 阅读 · 5 评论 -
学习Tensorflow,反卷积
在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等。目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的feature map上采样(反卷积)到输入图像的尺寸空间,就是反卷积层。那么它在tensorflow里是怎么实现的呢?本篇博文讲介绍这方面的内容。1. 反卷积函数介绍tf.nn.conv2d_原创 2016-06-12 16:58:54 · 18343 阅读 · 3 评论 -
学习TensorFlow,TensorBoard可视化网络结构和参数
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练过程中各层参数的变化情况。本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料。原创 2016-07-06 22:29:15 · 60483 阅读 · 6 评论 -
学习TensorFlow,浅析MNIST的python代码
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661。作为小码农的我,最近一直在学习tensorflow,主要使用python的接口进行学习。本博文主要以/tensorflow/tensorflow/models/image/mnist(github上下载)作为例程,讲解python代码的实现。 读代码的时候,建议大家理清主线,从主函数开始,调用到那个子函数时,再去阅读子函数的功能。我在minist的python代码原创 2016-05-04 10:56:14 · 19209 阅读 · 3 评论 -
学习TensorFlow,保存学习到的网络结构参数并调用
在深度学习中,不管使用那种学习框架,我们会遇到一个很重要的问题,那就是在训练完之后,如何存储学习到的深度网络的参数?在测试时,如何调用这些网络参数?针对这两个问题,本篇博文主要探索TensorFlow如何解决他们?本篇博文分为三个部分,第一是讲解tensorflow相关的函数,第二是代码例程,第三是运行结果。原创 2016-06-17 09:55:32 · 24864 阅读 · 7 评论 -
学习TensorFlow,邂逅MNIST数据集
如果说"Hello Word!"是程序员的第一个程序,那么MNIST数据集,毫无疑问是机器学习者第一个训练的数据集,本文将使用Google公布的TensorFLow来学习训练MNIST数据集。原创 2015-11-17 17:06:34 · 15278 阅读 · 11 评论