动态规划直通车之leetcode编辑距离

题目

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse ('h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention ('i' 替换为 'e')
enention -> exention ('n' 替换为 'x')
exention -> exection ('n' 替换为 'c')
exection -> execution (插入 'u')

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/edit-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

动态规划

虽然题目是困难等级,然而题目理解起来很简单,使用动态规划简直秒杀通关。
因为对字符的操作只有三种,插入,删除和替换。所以我们将原问题转换成规模较小的子问题。
状态定义

使用dp[i][j]表示word1前i个字母转成word2前j个字母的最少操作数

初始状态

当i为0时,word1一直进行插入操作,所以dp[0][j]=j
当j为0时,word1一直进行删除操作,所以dp[i][0]=i

状态转移

当word1[i-1]==word2[j-1],则不需要操作就能从dp[i-1][j-1]到达dp[i][j]
否则,就需要进行

 1. 插入dp[i][j-1] 
 2. 删除dp[i-1][j] 
 3. 替换dp[i-1][j-1]

这三种操作之一到达dp[i][j],即为
dp[i][j] = min(dp[i][j-1],dp[i-1][j],dp[i-1][j-1])+1

时间复杂度:O(mn),m代表word1长度,n代表word2长度
空间复杂度:O(mn)
在这里插入图片描述

func minDistance(word1 string, word2 string) int {
    len1,len2 := len(word1),len(word2)
    dp := make([][]int,len1+1)
    for i:=0;i<=len1;i++ {
        item := make([]int,len2+1)
        item[0] = i
        dp[i] = item
    }
    for j:=0;j<=len2;j++ {
        dp[0][j] = j
    }
    for i:=1;i<=len1;i++ {
        for j:=1;j<=len2;j++ {
            if word1[i-1] == word2[j-1] {
                dp[i][j] = dp[i-1][j-1]
            } else {
                dp[i][j] = min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1
            }
        }
    }
    return dp[len1][len2]
}
func min(a,c,b int) int {
    var res int
    if a<b {
        res = a
    } else {
        res = b
    }
    if c<res {
        res = c
    }
    return res
}

总结

大道至简,基础懂了,难题就能简单解决了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值