题目
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/edit-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
动态规划
虽然题目是困难等级,然而题目理解起来很简单,使用动态规划简直秒杀通关。
因为对字符的操作只有三种,插入,删除和替换。所以我们将原问题转换成规模较小的子问题。
状态定义
使用dp[i][j]表示word1前i个字母转成word2前j个字母的最少操作数
初始状态
当i为0时,word1一直进行插入操作,所以dp[0][j]=j
当j为0时,word1一直进行删除操作,所以dp[i][0]=i
状态转移
当word1[i-1]==word2[j-1],则不需要操作就能从dp[i-1][j-1]到达dp[i][j]
否则,就需要进行
1. 插入dp[i][j-1]
2. 删除dp[i-1][j]
3. 替换dp[i-1][j-1]
这三种操作之一到达dp[i][j],即为
dp[i][j] = min(dp[i][j-1],dp[i-1][j],dp[i-1][j-1])+1
时间复杂度:O(mn),m代表word1长度,n代表word2长度
空间复杂度:O(mn)
func minDistance(word1 string, word2 string) int {
len1,len2 := len(word1),len(word2)
dp := make([][]int,len1+1)
for i:=0;i<=len1;i++ {
item := make([]int,len2+1)
item[0] = i
dp[i] = item
}
for j:=0;j<=len2;j++ {
dp[0][j] = j
}
for i:=1;i<=len1;i++ {
for j:=1;j<=len2;j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1]
} else {
dp[i][j] = min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1
}
}
}
return dp[len1][len2]
}
func min(a,c,b int) int {
var res int
if a<b {
res = a
} else {
res = b
}
if c<res {
res = c
}
return res
}
总结
大道至简,基础懂了,难题就能简单解决了。