数据结构:Map和Set(1)

搜索树

概念

若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
它的左右子树也分别为二叉搜索树

这棵树的中序遍历结果是有序的

接下来我们来模拟一棵二叉搜索树,和二叉树一样,定义左右结点,结点值和根结点

public class BinarySearchTree {
    static class TreeNode{
        public int val;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(int val){
            this.val = val;
        }
    }
    public TreeNode root;
}

查找

拿目标值key与root进行比较,比root大的往右边搜索,比root小的往左边搜索;接着继续与左/右子树根结点比较,重复上面步骤

搜索代码

    public boolean search(int key){
        TreeNode cur = root;
        while(cur != null){
            if(cur.val < key){
                cur = cur.right;
            } else if (cur.val>key) {
                cur = cur.left;
            }else{
                return true;
            }
        }
        return false;
    }

时间复杂度:

最好情况:完全二叉树,那时间复杂度为O(logN)

最坏情况:单分支二叉树,时间复杂度O(N)

插入

对于下方的二叉树,我们需要插入15

我们可以定义一个cur,负责遍历二叉树;定义一个parent记录子树的根结点位置

如果当前cur结点的值比目标插入的值小,就把parent定位到当前结点,把cur往右子树移动

如果cur值较大就向左子树移。cur负责帮助parent定位到目标值附近

定义一个node承载目标值,如果parent的值小于目标值就把node右插,反之则左插

    public boolean search(int key){
        TreeNode cur = root;
        while(cur != null){
            if(cur.val < key){
                cur = cur.right;
            } else if (cur.val>key) {
                cur = cur.left;
            }else{
                return true;
            }
        }
        return false;
    }
    public static boolean insert(TreeNode root, int val){
        if(root == null){
            root = new TreeNode(val);
            return true;
        }
        TreeNode cur = root;
        TreeNode parent = null;
        while(cur!=null){
            if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else if(cur.val > val){
                parent = cur;
                cur = cur.left;
            }else{
                return false;
            }
        }
        TreeNode node = new TreeNode(val);
        if(parent.val>val){
            parent.left = node;
        }else{
            parent.right = node;
        }
        return true;
    }

拿这么一个列表来测试一下

array = {5,12,3,2,11,15}

正常画出来的图是这样的

测试debug后画出来的图一模一样😊

 删除

设待删除的结点是cur,而待删除结点的双亲结点是parent

第一种情况:cur.left == null

1. cur是root时,让root = cur.right

2.cur不是root,cur是parent.left,则parent.left = cur.right

3.cur不是root,cur是parent.right,则parent.right = cur.right

        if(cur.left == null){
            if(cur == root){
                root = parent.right;
            }else if(cur == parent.left){
                parent.right = cur.left;
            }else{
                parent.right = cur.right;
            }
        }

第二种情况:cur.right == null

1.cur是root,则root = cur.left

2.cur不是root,cur是parent.left,则parent.left = cur.left

3.cur不是root,cur是parent.right,则parent.right = cur.left

        else if(cur.right == null) {
            if(cur == root){
                root = parent.left;
            }else if(cur == parent.left){
                parent.left = cur.left;
            }else{
                parent.right = cur.left;
            }
        }

第三种情况:cur.left != null && cur.right != null

我们逍遥删除cur位置这个40元素

首先确定的一点是,40的左子树比40都小,右子树比40都大

替换法:找一个数据来替换cur

1.确定cur这里将来要放的数据一定比左边都大,比右边都小

2.要么在左树里面找到最大的数值(左树最右边的数据);

要么就在右树里面找到最小的数值来替换(右树最左边的数据)

3.找到合适的数据之后,直接替换cur的值,然后删除那个合适的数据结点

        else{
            //找到合适的值(从右子树找最小值)
            //target负责找到合适值,targetParent负责记录target的双亲结点
            TreeNode targetParent = cur;
            TreeNode target = cur;
            while(target.left != null){
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;
            
            //删除target,因为已经到最左边了,所以直接让parent的左边 = target的右边
            //就算右边为空也没关系
            targetParent.left = target.right;
        }

其实这个代码还存在一个问题,如下图,我们找到50为最小值进行替换,替换完删除50的时候执行targetParent.left = target.right; 但是变成20改为55了,这明显不对劲

也就是说,上面的代码只适合targetParent.left = target的情况

遇到这种targetParent.right = target的情况,需要让targetParent的右边 = target的右边

代码修改(只修改删除target的部分)

            if(targetParent.left == target){
                targetParent.left = target.right;
            }else{
                targetParent.right = target.right;
            }

不想看分析可以直接看这

整个的代码:

    public void remove(int val){
        TreeNode cur = root;
        TreeNode parent = null;
        while(cur!=null){
            if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else if(cur.val > val){
                parent = cur;
                cur = cur.left;
            }else{
                //开始删除
                removeNode(cur,parent);
                }
            }
        }

    private void removeNode(TreeNode cur, TreeNode parent) {
        if(cur.left == null){
            if(cur == root){
                root = parent.right;
            }else if(cur == parent.left){
                parent.right = cur.left;
            }else{
                parent.right = cur.right;
            }
        }else if(cur.right == null) {
            if(cur == root){
                root = parent.left;
            }else if(cur == parent.left){
                parent.left = cur.left;
            }else{
                parent.right = cur.left;
            }
        }else{
            //找到合适的值(从右子树找最小值)
            //target负责找到合适值,targetParent负责记录target的双亲结点
            TreeNode targetParent = cur;
            TreeNode target = cur;
            while(target.left != null){
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;

            //删除target
            if(targetParent.left == target){
                targetParent.left = target.right;
            }else{
                targetParent.right = target.right;
            }
        }
    }

Map的使用

搜索

我们学过的搜索

1.直接遍历: --> O(N),速度较慢

2.二分查找:--> O(logN),但要求搜索的序列有序

上面的搜索都属于静态搜索

而现实中我们需要在查找时进行一些插入和删除操作,就需要用到Map和Set这两个适合动态查找的容器了

Map属于Key-Value 模型 Key-Value 模型比如:
统计文件中每个单词出现的次数,统计结果是每个单词都有与其对应的次数: < 单词,单词出现的次数 >
梁山好汉的江湖绰号:每个好汉都有自己的江湖绰号

 Map有两种形式,二叉搜索树和哈希表

        Map<String,Integer> map = new TreeMap<>();//二叉搜索树, 查找复杂度O(logN)
        Map<String,Integer> map1 = new HashMap<>();//哈希表, 查找复杂度O(1) 哈希表-->数组+列表+红黑树

方法

put设置key和对应的value 

get通过key来找到对应的值 

如果找不到就返回null

getOrDefault方法和get差不多,只不过找不到就默认返回自己设置的返回值

keySet获取所有的key

entrySet返回key-value的所有关系

Set<Map.Entry<String,Integer>> entrySet = map.entrySet();

而Set是所有Entry的集合

注意:

1.Map是一个接口,不能直接实例化对象,只能实例化其实现类TreeMap或HashMap

2.Map里的键值对中key是唯一的,但value是可以重复的,以最后一个value为准

3.Map中键值对的Key不能直接修改,value可以修改,如果要修改key,只能先将该key删除掉,然后再来进行重新插入。


Set的使用

Set属于 key 模型 key 模型比如:
有一个英文词典,快速查找一个单词是否在词典中
快速查找某个名字在不在通讯录中

方法

iterator方法,输出每个key,每行1个 

注意:

1.Set是继承自Collection的一个接口类

2.TreeSet的底层是TreeMap

3.实现Set接口的常用类有TreeSetHashSet,还有一个LinkedHashSetLinkedHashSet是在HashSet的基础上维护了一个双向链表来记录元素的插入次序。


哈希表

概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,
必须要经过关键码的多次比较。搜索的效率取决于搜索过程中元素的比较次数
理想搜索方法:可以不经过比较,一次直接从表中得到要搜索的元素,通过该元素的存储位置和它的关键码之间建立一一映射的关系

这种函数叫做哈希函数:hash(key) = key % capacity

capacity是存储元素底层空间的大小

 哈希冲突:不同的关键字key,通过相同的哈希函数,得到相同的值

哈希冲突无法解决,只能降低冲突率

哈希函数的设计

合理的哈希函数可以降低冲突率

原则:

1.哈希函数定义域包括需要存储的全部关键码,如果散列表允许有m个地址时,值域必须在0到m-1之间

2.哈希函数计算出来的地址能均匀分布在整个空间中

3.哈希函数比较简单

常见的哈希函数

直接订制法:取关键字的某个线性函数为散列地址

优点:简单、均匀
缺点:需要事先知道关 键字的分布情况
使用场景:适合查找比较小且连续的情况
    public int firstUniqChar(String s) {
        int[] count = new int[26];
        for(int i = 0; i < s.length(); i++){
            char ch = s.charAt(i);
            count[ch-'a']++;
        }
        for(int i = 0; i< s.length();i++){
            char ch = s.charAt(i);
            if(count[ch-'a'] == 1){
                return i;
            }
        }
        return -1;
    }

除留余数法

设散列表中允许的 地址数为 m ,取一个不大于 m ,但最接近或者等于 m 的质数 p 作为除数,按照哈希函数: Hash(key) = key% p(p<=m),  将关键码转换成哈希地址

负载因子调节 

由图片我们可以知道负载因子越高,冲突率逐渐增加

填入表里面的元素已经是固定的情况下,为了使负载因子降低,我们只能让散列表扩容


冲突避免方法

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中还存在未填满的位置,那么可以把key存放到冲突位置的“下一个”空位置中去

那么怎么找到这个“下一个”位置呢?

1.线性探测法:

比如我们要在这个线性表中放入44,14,24,34,54

44与4冲突了,探测到4下一个的位置时空的,就把44放进去,后面的14,24,34挨个放进去空位置,到了54,后面没有位置可以放了,返回到前面继续探测,找到0位置 

但是线性探测有个缺点,产生冲突的数据会堆在一块 

2.二次探测

或者

H0时通过散列函数对关键码key计算出来的位置,m是表的大小,i = 0,1,2,3....代表的是要插入的数据排在第几位

 这样明显不会堆在一起,而是均匀散开来了


开散列/哈希桶

又叫链地址法(开链法),采用数组+链表(+红黑树,当数组长度>64 && 链表长度 >=8 之后才会把链表变成红黑树)的方法,把冲突的元素采用尾插法插入被冲突元素的后面(JDK 1.7之前采用头插法,JDK 1.8之后采用尾插法)

数组的每个元素是链表的头节点


手搓一个哈希桶

初始化链表

每个结点需要有三个域,key,value和next

    static class Node{
        public int key;
        public int val;
        public Node next;

        public Node(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }
    public Node[] array;
    public int usedSize;//记录存放的有效数据

插入元素 

第一步:首先用cur进行遍历,遍历index下标的链表是否存在key,如果存在就更新value,遍历完还不存在就插入元素

    public void put(int key, int val){
        int index = key % array.length;
        //遍历index下标的链表是否存在key,如果存在就更新value,不存在就插入数据
        Node cur = array[index];
        while(cur!=null){
            if(cur.key == key){
                //更新value
                cur.val = val;
            }
            cur = cur.next;
        }
        //cur==null-->遍历完没有找到key
        // 头插法
        Node node = new Node(key,val);
        node.next = array[index];
        array[index] = node;
        usedSize++;
    }

第二步:计算负载因子

如果负载因子仍然大于默认的最低负载因子,则散列表需要进行扩容

    public static final float DEFAULT_LOAD_FACTOR = 0.75f;
    private float doLoadFactor(){
        return usedSize * 1.0f / array.length;
    }

面试题:可以这样进行扩容吗?

        if(doLoadFactor()>DEFAULT_LOAD_FACTOR){
            //扩容
            array = Arrays.copyOf(array, 2*array.length);
        }

都这么问了,那很明显是不行的😊

假设我们的11元素经过哈希之后放在插入到1下标这里

经过扩容之后,capacity发生了改变,变成了20

根据hash(key) = key % capacity,此时11%20 = 11

因为长度改变,原来冲突的元素放到了其他位置中去,所以这样扩容是不行滴

设置cur遍历原来的数组,每遍历到一个元素就纵向遍历链表的元素并进行头插法

代码: 

注意:这里为什么要用一个tmp保存cur.next呢?

所以我们用一个tmp来保存原来的纵向遍历时11元素的地址


获取元素

    public int get(int key){
        int index = key % array.length;
        Node cur = array[index];
        while(cur != null){
            if(cur.key == key){
                return cur.val;
            }
            cur = cur.next;
        }
        return -1;
    }

Map和Set其他一些注意事项

hashCode 

创建一个student类,放入学生身份id

class Student {
    public String id;

    public Student(String id) {
        this.id = id;
    }
}
public class Test {
    public static void main(String[] args) {
        Student student1 = new Student("61012345");
        Student student2 = new Student("61012345");
        System.out.println(student1.hashCode());
        System.out.println(student2.hashCode());
    }
}

我们发现打印出两种结果

在没有重写hashCode方法的时候,系统默认调取Object类里面的hashCode方法

虽然student1student2id属性值相同,但它们是不同的对象实例,因此它们在内存中有不同的地址。而Object里的hashCode使用对象的地址来生成哈希码,才有上面两种不同的结果

我们在student类里面重写一下方法(tips:可以点击generate-->equals() and hashCode()-->一路点下去创建方法)

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (!(o instanceof Student)) return false;
        Student student = (Student) o;
        return Objects.equals(id, student.id);
    }

    @Override
    public int hashCode() {
        return Objects.hash(id);
    }

重写完打印结果

这个结果才满足x%len=hashcode这个算式,x相同,len确定,得到的结果就是一样的

🆗接下来我们想要重新写一下上面的哈希桶代码,跟之前手搓的不一样的是,重写的方法允许key传入一个类实例化对象而不是单纯能进行比较大小的数字

泛型类哈希桶代码

public class HashBuck2 <K,V>{
    static class Node<K,V>{
        public K key;
        public V val;

        public Node<K,V> next;
        public Node(K key, V val){
            this.key = key;
            this.val = val;
        }
    }

    public Node<K,V>[] array;
    public int usedSize;
    public static final float DEFAULT_LOAD_FACTOR = 0.75f;

    public HashBuck2(){
        array = (Node<K,V>[]) new Node[10];//强转
    }
    public void put(K key, V val){
        int hash = key.hashCode();
        int index = hash % array.length;
        Node<K,V> cur = array[index];
        while(cur!=null){
            //引用类型不能用等号
            //if(cur.key == key){
            if(cur.key.equals(key)){
                //更新value
                cur.val = val;
            }
            cur = cur.next;
        }
        Node<K,V> node = new Node(key,val);
        node.next = array[index];
        array[index] = node;
        usedSize++;
    }
    public V getValue(K key){
        int hash = key.hashCode();
        int index = hash % array.length;
        Node<K,V> cur = array[index];
        while(cur != null){
            if(cur.key.equals(key)){
                return cur.val;
            }
            cur = cur.next;
        }
        return null;
    }
}

测试:

问题:hashCode和equals区别

一个例子带你看明白:

⚠以后在写自定义对象的时候建议把equals和hashCode重写一下

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值