目录
2.4 Sequences and Summations (序列与求和)
2.5 Cardinality of Sets (集合的基数)
(5)对称矩阵:当矩阵A里面的aij = aji的时候,矩阵A是对称矩阵
2.1 Sets (集合)
没什么好说的,高中概念
1.特殊集合
2.一些概念
(1)区间
(2)全集空集
注意一点:空集和包含空集的集合不一样‘
(3)子集
真子集:
真子集的韦恩图
子集:
(4)基数
一个有限集A的基数是A中元素的数量,用|A|表示。
注意:空集的基数为0,但是包含空集的集合的基数是1
(5)幂集
集合A的所有子集的集合,记为P (A),称为A的幂集
6.元组
有序的n元组(1,2,.....,)是有序的集合,它的第一个元素是1, 第二个元素是2,以此类推,直到最后一个元素.
7.笛卡尔积(Cartesian Product)
集合A和集合B的笛卡尔积 = A ✖ B
例子:
笛卡尔积A×B的一个子集R被称为从集合A到集合B的关系
多个集合的笛卡尔积
2.2 Set Operations (集合运算)
一. 集合间的概念
1.并集(Union)
并集相当于逻辑运算里面的或
2.交集(Intersection)
不相交的两个集合的交集 = ∅
3.补集(Complement)
4.差集(Difference)
二. 定律
第二德摩根律证明
还可以用集合生成器来证明
三. 多重集
1. 概念
一个多重集是一个元素的无序集合,其中一个元素可以作为一个成员多次出现
这里的4 1 3被称为重数
2. 多重集的并集
就是找出P和Q相同元素的重数最大值再乘上元素组合成的新集合
3.多重集的交集
找出P和Q二者共同元素重数最小值再乘上元素组成的新集合
4.多重集的差集
找出P和Q二者共同元素重数相减,接着与0比较得出而这最大值,得出的最大值与元素相乘组合成新集合
5.多重集合集
找出P和Q二者共同元素重数相加再与元素相乘组合成新集合
2.3 Functions (函数)
1.函数的三种理解
第一种:分配 f: A-->B 把A里的元素分配给B
第二种:关系
第三种:映射
f: A-->B说明f是A到B的一个映射,此时A是f的定义域,B是f的陪域
f的值域是A中f下所有点的图像的集合,用f (A)表示
2.单射(injection)
一对一函数,x不同则y不同
即:没有一个x对应两个y,也没有一个y有对应两个x
一般是少射向多,而且有元素没有匹配到
3.满射(surjections)
对任意b,存在a满足f(a) = b
即:值域y是满的,每个y都有x对应,不存在某个y没有x对应的情况
一般是多射向少,多的元素可能射向少里面的同一个元素,但不存在少里面的元素没对应的情况
4.双射(Bijections)
既是满射,也是单射
即:每个y都有x对应,而且都是一一对应
例子
这里的f是满射吗?
答案是对的。 因为陪域{1,2,3}里面的三个元素都是定义域{a,b,c,d}里面的像
如果陪域改成{1,2,3,4}就不是满射
注意:函数f存在反函数是函数f是双射的充要条件
5.复合函数(传递的特点)
6.上取整和下取整函数
上取整
下取整
2.4 Sequences and Summations (序列与求和)
只有这个要记
2.5 Cardinality of Sets (集合的基数)
1. 基数和函数关系
集合A的基数等于集合B的基数,表示为|A| = |B|当且仅当a到B存在双射
如果从A到B有单射,那么A|≤|B|
2. 可数
当且仅当可以在一个序列中列出该集合的元素(由正整数组成)时,一个无限集合S是可数的
比如:f(x) = 2x 这是一个无线集合,但是可数
证明:正有理数是可数的
2.6 Matrices (矩阵)
1.基本概念
(1)一个m行n列的矩阵可以写成m×n矩阵
当行和列相等时,这个矩阵被称为方阵
(2)元素
2.矩阵运算(普通运算)
(1)加法:
对应位置元素相加就行
(2)乘法:
A横行×B纵列
注意:AB≠BA
(3)单位矩阵
(4)转置矩阵:行列互换
(5)对称矩阵:当矩阵A里面的aij = aji的时候,矩阵A是对称矩阵
如:
3.逻辑运算
(1)并
A和B的合并,用A∨B表示,是aij∨bij的零1矩阵。
(2)交
A和B的相交,用A∧B表示,是aij∧bij的零1矩阵。
(3)布尔积 AB
同一个矩阵的布尔积