集群传入本地目录并便利生成集群目录

从本地目录往集群添加整个目录的操作是很简单的 我们只需要知道集群和File文件的操作哪里有区别就行了.File建目录以及写文件请见https://editor.csdn.net/md/?articleId=107520726。下面我们介绍集群遍历本地目录以及创建文件夹

@Before
public void start() throws URISyntaxException, IOException, InterruptedException {
        //获取文件系统
        configuration = new Configuration();
        //配置后在集群上运行
        fileSystem = FileSystem.get(new URI("hdfs://hadoop2:9820"), configuration,"***用户名**");
    }
 @After
    public void end() throws IOException {
        //关闭文件系统
        fileSystem.close();
    }

核心代码

 //递归文本及目录
    public void recursioncontents(String hdfsStr, String localStr,FileSystem fs) throws IOException {
        File file = new File(localStr);
        File[] files = file.listFiles();
        if (files.length == 0){
            return;
        }else{
            for (int i = 0; i < files.length; i++) {
                if (files[i].isFile()){
                    String string = files[i].getPath();
                    FileInputStream fis = new FileInputStream(new File(string));

                    String s1 =files[i].getName();
                    FSDataOutputStream fsDataOutputStream = fs.create(new Path(hdfsStr + "/" + s1));

                    IOUtils.copyBytes(fis,fsDataOutputStream,configuration);

                    IOUtils.closeStream(fis);
                    IOUtils.closeStream(fsDataOutputStream);
                }else {
                    String s1 = hdfsStr + "/" + files[i].getName();//这里与File文件创建目录有区别
                    String string = files[i].getPath();
                    fs.mkdirs(new Path(s1));//这里与File文件创建目录有区别
                    recursioncontents(s1,string,fs);

                }
            }
        }
    }

传入路径

 @Test
    public void Recursion() throws IOException {
        String hdfsStr = "/Result";
        String localStr = "D:\\Hadoop_Testresult";
        recursioncontents(hdfsStr,localStr,fileSystem);
    }
<think>好的,用户的问题是如何将CSV文件加载到Spark集群中进行处理。我需要根据提供的引用内容和系统级指令来回答这个问题。首先,要确保回答结构清晰,分步骤说明,同时正确应用LaTeX格式,生成相关问题。 首先,我需要回忆Spark中加载CSV文件的常用方法,比如使用DataFrame API或者Spark SQL。根据引用[2]提到的示例数据,用户可能是在spark-shell、pyspark或sparkR环境中操作,所以需要涵盖这些情况。另外,引用[1]提到在SQL优化器中优化CSV表达式,可能涉及配置项如`spark.sql.optimizer.enableJsonExpressionOptimization`,但用户的问题是关于加载CSV,所以可能需要提到相关的配置选项,比如是否优化读取时的列剪枝。 接下来,分步骤说明如何加载CSV文件。首先,使用SparkSession读取CSV文件,需要指定格式和选项,比如header、inferSchema等。然后,可能需要提到如何调整参数,比如分隔符、编码等。此外,要提到性能优化的方法,比如模式推断的开销,以及显式定义模式的好处,这可能与引用[1]中的列剪枝优化相关,可以引用[^1]来说明优化配置。 还要注意代码示例的正确性,使用正确的语法,比如在Scala和Python中的不同写法。同时,独立公式需要用$$...$$,不过在这个问题中可能用不到数学公式,但如果有涉及计算的部分需要注意。 生成的相关问题可能需要围绕优化CSV处理、处理模式推断的问题、性能调优、与其他数据格式的比较等。确保每个步骤都自然引用相关的引用内容,比如在提到优化时引用[^1],在示例数据时引用[^2]。 最后,检查LaTeX是否符合要求,行内公式用$...$,独立公式单独成段。但当前问题可能不涉及数学表达式,但如果有的话需要正确应用。例如,提到某些参数设置时如果有数学表达式需要处理,但这里可能不需要。 总结回答步骤: 1. 使用SparkSession的read方法加载CSV。 2. 指定文件路径和选项,如header、inferSchema。 3. 提到优化配置,如启用表达式优化。 4. 示例代码展示Scala和Python的实现。 5. 强调模式定义的重要性,引用优化配置。 6. 可能提到性能建议,如分区和缓存。 7. 生成相关问题,如优化方法、模式处理、性能调优等。 需要确保回答中的引用标记正确,例如在提到优化时添加[^1],在示例数据时添加[^2]。</think>要将CSV文件加载到Spark集群中进行处理,可以按以下步骤操作: --- ### 步骤 1: 使用SparkSession读取CSV文件 Spark通过`SparkSession`的`read`方法支持多种数据格式,包括CSV。以下是一个基本示例: ```scala val df = spark.read .format("csv") .option("header", "true") // 包含表头 .option("inferSchema", "true") // 自动推断列类型 .load("path/to/your/file.csv") ``` 在PySpark中: ```python df = spark.read \ .format("csv") \ .option("header", "true") \ .option("inferSchema", "true") \ .load("path/to/your/file.csv") ``` --- ### 步骤 2: 配置CSV读取参数 通过`.option()`方法设置CSV解析选项: - `sep`:指定分隔符(默认`,`),例如`.option("sep", ";")`。 - `encoding`:设置编码格式,如`.option("encoding", "UTF-8")`。 - `mode`:处理解析错误的模式(如`PERMISSIVE`, `DROPMALFORMED`, `FAILFAST`)。 --- ### 步骤 3: 优化CSV处理性能 1. **显式定义模式**:避免`inferSchema`的开销,手动定义StructType: ```scala import org.apache.spark.sql.types._ val schema = StructType(Array( StructField("name", StringType, nullable = true), StructField("age", IntegerType, nullable = true) )) val df = spark.read.schema(schema).csv("path/to/file.csv") ``` 2. **启用优化配置**:在Spark配置中设置`spark.sql.optimizer.enableJsonExpressionOptimization`为`true`以剪枝不必要的列。 --- ### 步骤 4: 执行处理操作 加载数据后,可通过DataFrame API或SQL进行操作: ```python df.filter(df.age > 30).show() ``` --- ### 注意事项 - **分区策略**:若文件较大,可调整分区数以提高行度。 - **缓存机制**:对频繁访问的数据调用`df.cache()`减少重复读取开销[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值