图的深度优先遍历

深度优先遍历是连通图的一种遍历策略。其基本思想如下:

设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。代码示例中遍历如下图所示的图。

这里写图片描述

代码:
package test.algorithm.FastSlowPointer;

import java.util.Stack;

/**
 * 图的深度优先遍历
 * @author serenity
 *
 */
public class Graph {

    // 存储节点信息
    private char[] vertices;

    // 存储边信息(邻接矩阵)
    private  int[][] arcs;

    // 图的节点数
    private int vexnum;

    // 记录节点是否已被遍历
    private boolean[] visited;

    // 初始化
    public Graph(int n) {
          vexnum = n;
          vertices = new char[n];
          arcs = new int[n][n];
          visited = new boolean[n];
          for (int i = 0; i < vexnum; i++) {
             for (int j = 0; j < vexnum; j++) {
             arcs[i][j] = 0;
             }
          }

    }

    // 添加边(无向图)
    public void addEdge(int i, int j) {
          // 边的头尾不能为同一节点
          if (i == j)return;

          arcs[i][j] = 1;
          arcs[j][i] = 1;
    }

    // 设置节点集
    public void setVertices(char[] vertices) {
        this.vertices = vertices;
    }

    // 设置节点访问标记
    public void setVisited(boolean[] visited) {
        this.visited = visited;
    }

    // 打印遍历节点
    public void visit(int i){
        System.out.print(vertices[i] + " ");
    }

    // 从第i个节点开始深度优先遍历
    private void traverse(int i){
        // 标记第i个节点已遍历
        visited[i] = true;
        // 打印当前遍历的节点
        visit(i);

        // 遍历邻接矩阵中第i个节点的直接联通关系
        for(int j=0;j<vexnum;j++){
            // 目标节点与当前节点直接联通,并且该节点还没有被访问,递归
            if(arcs[i][j]==1 && visited[j]==false){
                traverse(j);
            }
        }
    }

    // 图的深度优先遍历(递归)
    public void DFSTraverse(){
        // 初始化节点遍历标记
        for (int i = 0; i < vexnum; i++) {
            visited[i] = false;
        }

        // 从没有被遍历的节点开始深度遍历
        for(int i=0;i<vexnum;i++){
            if(visited[i]==false){
                // 若是连通图,只会执行一次
                traverse(i);
            }
        }
    }

    // 图的深度优先遍历(非递归)
    public void DFSTraverse2(){
        // 初始化节点遍历标记
        for (int i = 0; i < vexnum; i++) {
            visited[i] = false;
        }

        Stack<Integer> s = new Stack<Integer>();
        for(int i=0;i<vexnum;i++){
            if(!visited[i]){
                //连通子图起始节点
                s.add(i);
                do{ 
                    // 出栈
                    int curr = s.pop();

                    // 如果该节点还没有被遍历,则遍历该节点并将子节点入栈
                    if(visited[curr]==false){
                        // 遍历并打印
                        visit(curr);
                        visited[curr] = true;

                        // 没遍历的子节点入栈
                        for(int j=vexnum-1; j>=0 ; j-- ){
                            if(arcs[curr][j]==1 && visited[j]==false){
                                s.add(j);
                            }
                        }
                    }
                }while(!s.isEmpty());
            }
        }
    }

    public static void main(String[] args) {
        Graph g = new Graph(9);
        char[] vertices = {'A','B','C','D','E','F','G','H','I'};
        g.setVertices(vertices);

        g.addEdge(0, 1);
        g.addEdge(0, 5);
        g.addEdge(1, 0);
        g.addEdge(1, 2);
        g.addEdge(1, 6);
        g.addEdge(1, 8);
        g.addEdge(2, 1);
        g.addEdge(2, 3);
        g.addEdge(2, 8);
        g.addEdge(3, 2);
        g.addEdge(3, 4);
        g.addEdge(3, 6);
        g.addEdge(3, 7);
        g.addEdge(3, 8);
        g.addEdge(4, 3);
        g.addEdge(4, 5);
        g.addEdge(4, 7);
        g.addEdge(5, 0);
        g.addEdge(5, 4);
        g.addEdge(5, 6);
        g.addEdge(6, 1);
        g.addEdge(6, 3);
        g.addEdge(6, 5);
        g.addEdge(6, 7);
        g.addEdge(7, 3);
        g.addEdge(7, 4);
        g.addEdge(7, 6);
        g.addEdge(8, 1);
        g.addEdge(8, 2);
        g.addEdge(8, 3);

        System.out.print("深度优先遍历(递归):");
        g.DFSTraverse();

        System.out.println();

        System.out.print("深度优先遍历(非递归):");
        g.DFSTraverse2();
    }

}
展开阅读全文

没有更多推荐了,返回首页