【Milvus的安装和使用】

0. 介绍

milvus是一个用于存储、index索引和管理巨量由深度学习网络或者其他模型生成embedding vectors的工具。不同于常见的关系型数据库用来处理结构化数据,Milvus被设计用来处理由非结构化数据,如图像、音频等,生成的embedding vectors信息。embedding vector本质指的是float类型的数组,常通过深度学习网络提取非结构化数据的特征得到。其中Milvus最主要的功能是vector similarity search,即向量相似性搜索,常见的评价指标有欧式距离等,平台采用ANN搜索算法来加速搜索过程。

使用Miluvs的常见场景如下:

  • 以图搜图
  • 人脸检索
  • 视频去重

即大部分非结构化数据的一对多搜索,都可以使用Milvus来完成。

1. Milvus安装

Milvus的官方文档中提供了详细的安装过程,具体可以参考官方文档链接。这里主要简述一下安装流程,主要参考如下页面内容。

 Milvus使用Docker Compose工具来启动和停止服务,过程如下:

  • 新建一个工作目录,下载YAML文件
wget https://github.com/milvus-io/milvus/releases/download/v2.1.4/milvus-standalone-docker-compose.yml -O docker-compose.yml
  • 启动Milvus容器
sudo docker-compose up -d

这个命令开始执行之后会自动下载Milvus对应的镜像文件,需要等待一段时间。 当镜像下载完成后,相应的容器也会启动,可以通过如下命令查看

sudo docker-compose ps

 可以看到除了milvus standalone服务之外还有两个依赖容器。

  • 停止Milvus容器
sudo docker-compose down

2. Milvus的工作流程

下面将以常见的以图搜图例子介绍Milvus的具体工作流程, 如下图(图像来自Milvus官方的examples)所示:

 整个流程分为两个阶段:

  • 构建图像向量库

 首先需要准备一个图像数据集(库),这个就是我们待检索数据库内容,将非结构化图像数据,通过深度学习算法,常见的就是图像分类算法,Resnet之类的,在图中官方使用towhee深度学习库来提取图像特征,然后会得到每张图像的特征向量,这个特征向量的维度是固定的,可能是1000、2048维之类的,最后将这个特征向量存储到Milvus数据库中。

  • 在以构建的向量库中执行搜索

当将所有的图像数据的特征向量都插入到Milvus中之后,此时就可以进行图像检索。检索具体就是输入一张待检索的图像,经过towhee得到图像对应的特征向量,然后将这个目标特征向量与Milvus中所有图像的特征向量进行相似度对比,然后TopK个距离最近的图像结果。

3. Milvus的初步使用

milvus支持不同变成语言接口来访问、操作数据库,具体支持如下图所示:

 3.1 安装PyMilvus库

在本文中,主要讲解如何使用PyMilvus来操作Milvus,首先需要安装该库,命令如下:

pip3 install protobuf==3.20.0
pip3 install grpcio-tools
pip install pymilvus

可以通过下面的命令判断是否安装成功

python3 -c "from pymilvus import Collection"

3.2 下载hello_milvus文件

下面将以官方文档的python例子进行讲解如何使用Milvus,详情可以参考链接

  • 在上述YAML文件的同级目录下,使用docker-compose ps -a命令,确保milvus容器处在开启状态
  • 下载hello_milvus.py文件
wget https://raw.githubusercontent.com/milvus-io/pymilvus/v2.1.3/examples/hello_milvus.py

3.3 解析hello_milvus文件内容

导入相关python库

from pymilvus import (
    connections,
    utility,
    FieldSchema,
    CollectionSchema,
    DataType,
    Collection,
)

连接Milvus服务

connections.connect("default", host="localhost", port="19530")

创建collection

Milvus的collection类似MySQL中的tabel,因此以MySQL中的表来类比Milvus的Collectio含义。

fields = [
    FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=False),
    FieldSchema(name="random", dtype=DataType.DOUBLE),
    FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=8)
]
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")
hello_milvus = Collection("hello_milvus", schema)

上面代码是创建一个collection的过程,其中包含3个属性:pk、random和embedding,下图为MySQL的表与Milvus的collection的对比。 

 其中fields指的是包含哪些属性,属性需要指定数据类型,是否为主键之类的,不同之处在于embedding属性,该属性数据结构是数组,数组元素个数为8,在Milvus中用来保存vector embedding内容。

构建数据并插入到collection中

import random
entities = [
    [i for i in range(3000)],  # field pk
    [float(random.randrange(-20, -10)) for _ in range(3000)],  # field random
    [[random.random() for _ in range(8)] for _ in range(3000)],  # field embeddings
]
insert_result = hello_milvus.insert(entities)

为实例创建索引

index = {
    "index_type": "IVF_FLAT",
    "metric_type": "L2",
    "params": {"nlist": 128},
}
hello_milvus.create_index("embeddings", index)
  • 向量之间相似度的评价公式

 索引的类型

 使用多少维数据来描述索引

将collection中的数据加载到内存中执行向量相似度检索

hello_milvus.load()
vectors_to_search = entities[-1][-2:]
search_params = {
    "metric_type": "L2",
    "params": {"nprobe": 10},
}
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])

 普通搜索

result = hello_milvus.query(expr="random > -14", output_fields=["random", "embeddings"])

复合搜索 

result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > -12", output_fields=["random"])

 删除collection

utility.drop_collection("hello_milvus")

4. 总结

这篇文章主要介绍了Milvus是什么,有什么用,以及使用Milvus来进行非结构化数据检索的工作流程等等,后续将介绍如何运行Milvus提供的以图搜图例子。 

### 如何在Ubuntu系统上安装Milvus #### 准备工作 为了确保顺利安装Milvus,在开始之前需确认已正确配置好环境。这包括但不限于更新系统的APT包列表,以获取最新版本的软件包信息。 ```bash sudo apt update ``` 此命令会刷新本地APT缓存并同步远程仓库中的索引文件[^4]。 #### 安装Docker引擎 由于Milvus推荐通过Docker部署,因此先要保证Docker已经成功安装到目标机器上。如果尚未安装,则可以通过官方文档指导完成: 1. 更新现有程序包至最新状态; 2. 添加必要的依赖项以便apt能够使用HTTPS方式通信; 3. 添加Docker官方GPG密钥验证源的真实性; 4. 设置稳定版存储库; 5. 执行实际安装流程; 具体步骤可参照[Docker官网](https://docs.docker.com/engine/install/ubuntu/)说明进行操作。 #### 获取docker-compose插件 对于某些特定场景下可能还需要额外安装`docker-compose-plugin`工具来简化多容器应用管理: ```bash sudo apt-get install docker-compose-plugin ``` 这条指令将会把docker compose plugin加入到当前用户的环境中去[^3]。 #### 下载并运行Milvus服务 当上述准备工作完成后就可以着手准备启动Milvus实例了。最简便的方法就是利用官方提供的[docker-compose.yml](https://github.com/milvus-io/milvus/blob/master/docker/compose/docker-compose.yml)模板文件来进行一键化部署: 1. 创建一个新的目录用于存放项目文件夹结构以及后续产生的数据卷; 2. 将[yml文件](https://raw.githubusercontent.com/milvus-io/milvus/main/docker/compose/docker-compose.yml)保存下来放到刚才创建好的路径里边; 3. 修改其中涉及到的一些参数设置比如端口号映射关系等满足个人需求之后再执行如下命令即可快速搭建起一套完整的测试环境出来: ```bash cd /path/to/your/project/folder wget https://raw.githubusercontent.com/milvus-io/milvus/main/docker/compose/docker-compose.yml docker-compose up -d ``` 以上命令会在后台异步地拉取所需镜像资源并且按照定义自动构建整个集群架构[^1]。 #### 测试连接情况 最后一步就是要检验刚刚建立起来的服务能否正常运作。可以借助浏览器直接访问http://localhost:19121地址查看Web UI界面或者采用Python SDK等方式发起API请求做进一步的功能性验证[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值