深度学习
文章平均质量分 73
不要清汤锅
The lion doesn't concern himself with the opinions of the sheep
展开
-
pytorch 神经网络初始化方式
神经网络的参数初始化和批量归一化 - Hiidiot - 博客园关于参数随机初始化问题的补充 - 知乎pytorch中的参数初始化方法总结_ys1305的博客-CSDN博客_pytorch参数初始化原创 2021-09-16 12:44:55 · 1057 阅读 · 0 评论 -
强化学习中的epoch是什么意思
转自deepAIhttps://deepai.org/machine-learning-glossary-and-terms/epochWhat is an Epoch?In terms of artificialneural networks, an epoch refers to one cycle through the full training dataset. Usually, training a neural network takes more than a few epoc.转载 2021-07-27 15:52:17 · 1689 阅读 · 0 评论 -
Python numpy模块中transpose函数以及swapaxes函数用法
一、前言众所周知,python的numpy模块在数据分析中占有重要的地位,因其所定义的 ndarray(n-dimensional array,多维数组)对象比之python基本类库所定义的 list 对象而言,具有更高的灵活性和更广的适用范围。更重要的是,由于numpy模块是用C语言编写的,因此计算机在处理 ndarray 对象时的速度要远快于 list 对象。看一个例子:>> import numpy as np my_arr = np.arrange(1000000)...转载 2021-05-31 14:41:17 · 1030 阅读 · 1 评论 -
反向传播——通俗易懂
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。转载 2021-05-29 11:10:55 · 560 阅读 · 0 评论 -
train set、dev set和test set的三者联系与区别
train set:该集合是用于训练模型的。dev set:该集合是用于在训练模型中评估模型,以促进模型优化的。test set:该集合是用于测试训练好的模型是否有效的。简而言之就是:你使用了train set训练一个模型,这个模型有一个优化目标,利用dev set来评估你的模型,确定你模型离你的目标差距。在不断迭代中不断用train set训练模型,dev set评估模型,不断靠近你的目标直至最优。之后用test set来验证模型效果。注意:dev set 和 test set需要在同转载 2021-01-11 18:52:56 · 1562 阅读 · 0 评论 -
【深度学习】深入理解Batch Normalization批标准化
Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》的导读。 机器学习领域有个很重要的假转载 2021-01-10 19:22:07 · 124 阅读 · 0 评论 -
深度学习中Dropout原理解析
1. Dropout简介1.1 Dropout出现的原因在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合。此时,训练模型费时就成为一个很大的问题,不仅训练多个转载 2021-01-10 19:21:20 · 462 阅读 · 0 评论