tensorflow / tensorflow-gpu / tensorflow-cpu区别?

在tensorflow 1.x中,

环境tensorflow==1.xtensorflow-gpu==1.x
只有CPUcpu运行和tensorflow一样运行
有GPU且装Cuda和Cudnncpu运行gpu运行
有GPU未装Cuda或Cudnncpu运行和tensorflow一样运行

在tensorflow 2.x中,

环境tensorflow-cpu==2.xtensorflow==2.x
只有CPUcpu运行cpu运行
有GPU且装Cuda和Cudnncpu运行gpu运行
有GPU未装Cuda或Cudnncpu运行cpu运行

tensorflow 2.x不再区分是否gpu,当检测到gpu并安装cuda后,自动调用gpu。

但是,有些人不需要或没有gpu,gpu适配对这部分群体是浪费的(占用不必要的资源),于是有了tensorflow-cpu,我们可以理解其为cpu only版本

(综上,也可以理解为:tensorflow==1.x对应tensorflow-cpu==2.x,tensorflow-gpu==1.x对应tensorflow==2.x)

个人理解,如有错误请指正。

参考:
https://github.com/tensorflow/tensorflow/tree/v2.3.1
https://github.com/tensorflow/tensorflow/tree/r1.14
Difference between installation libraries of Tensorflow GPU vs CPU

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值