EPI:Sorting

本文探讨了针对不同情况下的高效排序算法,包括快速排序、插入排序、堆排序、计数排序、基于指针的间接排序等,并介绍了如何在变量长度排序中封装对象以顺利进行交换操作。此外,还涉及了基于二叉搜索树(BST)、映射(Map)和计数排序的实现,以及任务分配、最大并发事件数计算、区间并集、插入区间、最小覆盖点等问题的解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1) Most efficient sorting algorithm for each situation

-- A large array whose entries are random numbers

Quicksort. considered one of the most efficient sorting, and is in-place

-- A small array of numbers

Insert sorting. stable and in-place

-- A large array of numbers that are already sorted

Heap sort. 

-- A large collection of integers that are drawn from a small range

Counting sort

-- A large collection of numbers most of which are duplicates

BST with linked list for elements which have the same key

-- Stabilily is required 

Merge sort, efficient and stable


(2) Variable length sort

思路:几乎所有的sorting都依赖于swapping操作,但是,如果交换对象的大小不一样,如果才能顺利进行交换呢?能不能将对象封装成大小一样的item呢?答案是Yes。Build an array P of pointers to the records. Then sort the pointers using the compare function on dereferenced pointers。 Finally, iterate through P writing the deference pointers


(3) Least distance sort.

思路:同上(Indirect sort), sort references to the objects first and then apply the permutation that was applied the references in the end. In this way, each item is moved exactly correct destination exactly once. 


(4) BST, Map, Counting sort

Map is implemented by the BST, and counting sort is entailed by the integer range. 


(5)  Task assignment

compute a 2-partition of A that has min max load


(6) Maximum number of events concurrently

思路:sort the endpoints of events, and count the maximum number of events taking place concurrently


(7) Union of intervals

思路:维护一个start和end


(8) Insert an interval

思路:类似于merge intervals


(9) Minimum points covering intervals

思路:find the task which ends earliest and remove those tasks which intersect with it. Repeat this process and continue.


(10) Stack sort (increasing)

思路:递归,拿出最顶段的item, insert it into the left sorted items in the stack.

if(S.empty()==false){
    T e=S.top();
    S.pop();
    sort(S);
    insert(S, e);
}
void insert(stack<int>& S, int e){
      if(S.empty() || S.top()>=e) 
              S.push(e);
      else{
              int f=S.top();
              S.pop();
              insert(S,e);
              S.push(f);
      }
}




内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值