Metal artifact reduction on cervical CT images by deep residual learning


摘要

文章:https://doi.org/10.1186/s12938-018-0609-y

HUANG XIA, WANG JIAN, TANG FAN, et al. Metal artifact reduction on cervical CT images by deep residual learning[J]. BioMedical Engineering OnLine,2018(1). DOI:10.1186/s12938-018-0609-y.


背景:近距离放射治疗是宫颈癌最有效的治疗方法,对于近距离放射治疗,需要CT成像从而正确规划放射时的剂量。然而放射治疗的探头会引起金属伪影,因此需要开发一种有效的宫颈CT图像金属伪影消除算法。

方法:提出一种新的基于卷积神经网络的残差学习方法(RL-ARCNN)来减少宫颈CT图像中的金属伪影。具体地,第一步通过模拟金属伪影生成数据集,用于训练CNN。该数据集包括伪影插入、无伪影和伪影残留图像。然后训练RL-ARCNN网络以减少伪影,训练后的模型可用于宫颈CT图像的金属伪影去除。

结果:测试集上PSNR达到38.09,高于普通CNN网络的37.79,表明RL-ARCNN具有良好的伪影抑制效果。

结论:RL-ARCNN显著减少了金属伪影,提高了关键结构的可视化程度。金属伪影被有效地消除,无需原始投影数据和复杂的后处理过程。

一、方法

(一)数据生成

基于无伪影的CT图像生成含金属伪影的图像和伪影残留图像(即无伪影图像和含金属伪影图像的差异图)。
这种伪影生成方法很常见,基本上大部分有监督MAR方法都会用到这种模拟金属伪影,具体可见:

Zhang Y, Yu H. Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Tras Med Imaging. 2018;37(6):1370–82.

(二)网络结构

网络结构如下图所示,网络深度为D,网络的输入为50×50的图像块,第一层为64个3×3×1的卷积层和ReLU激活层,由于做了padding,因此输出为64个50×50的feature map,这一层输出得到的feature map包含了详细的局部纹理和大量相关的边缘信息;网络的第2至D-1层,为64个3×3×1的卷积层、批量归一化(BN)和ReLU激活层,由于每一层都做了zero-padding,因此输出仍为64个50×50的feature map.最后一层为1个3×3×64的卷积层,输出得到50×50的图像块,
在这里插入图片描述

(三)训练过程

参数初始化:偏置biases的初始化值都为0,权重的初始化值如下图所示:
在这里插入图片描述
neuron_inneuron_out 分别表示输出层和输入层的神经元个数。

损失函数:即网络的优化目标
在这里插入图片描述
( pii, pif) 表示成对的含伪影和不含伪影的图像块。theta表示网络中的参数,R (pii,theta) 表示网络的最终输出,从式子中可以看出,该网络的目标是预测含伪影(Iartifact-insert)和不含伪影图像(Iartifact-free)的差,即伪影残差图(Iartifact-residual),在获得Iartifact-residual后,用Iartifact-insert - Iartifact-residual = Iartifact-free 就可以去除伪影。

优化器:最常用的Adam,在这就不过多介绍了。

二、实验

(一)实验数据

35例宫颈癌患者,放射治疗前后的CT图像。其中20例(共600张CT)用于生成金属伪影图像,15例(共450中CT)为临床真实伪影图像。图像尺寸为512×512,分辨率为 0.738–1.084 × 0.738–1.084。

(二)实验过程

600张模拟伪影图像用于网络的训练和测试,450张用于训练,100张用于验证,50张用于测试。在整个训练过程中,随机生成50×50的图像块,学习率为0.01,权重衰减设置为log-5,Adam为默认值,batch size = 64, 共100个epochs。

(三)实验结果

实验指标:MSE和PSNR

MSE越小表明两张图像越相似,PSNR越大表明图像质量越好,此外常用的指标还有SSIM.

(1)patch size对结果的影响
在这里插入图片描述
唯一变量为patch size,PSNR的值越大,表明图像质量越好,从上表中可以看出50×50的PSNR最大,表现最好。
在这里插入图片描述
上表格为在不同patch size条件下,普通学习(即学习目标为Iartifact-free) 和残差学习(即学习目标为Iartifact-residual)的PSNR的值,比较的基准图像为Iartifact-free,从表中可以看出,在三种patch size下,残差学习的PSNR都最大,图像质量最好。

(2)图像的训练数量:
在这里插入图片描述
每个患者分别由30张宫颈CT图像,从图中可以看出随着训练量的增加,得到的图像的PSNR越大。

(3)视觉效果

在这里插入图片描述
第一行是无金属伪影的图像,第二行是伪影插入图像,第三行是伪影减少后的图像,第四行是伪影残留图像。伪影减少图像是通过伪影插入图像中减去伪影图像(也就是网络的输出)获得的。如上图所示,伪影几乎被完全移除,金属附近的组织特征被真实地保留下来。

(4)临床效果

数据:15名患者的450张真实伪影CT图像
由于缺乏ground truth,这里只做了定性比较。

在这里插入图片描述
从图中可以看出,伪影去除的较为关键,组织结构信息也保留了下来。

三、总结

提出了一种新的基于CNN的残差学习方法(RL-ARCNN),以减少近距离放疗宫颈CT图像中的金属伪影。为了训练RL-ARCNN,生成了包括伪影插入、伪影消除和伪影残余图像的模拟数据集。在模拟数据集上的实验结果表明,RL-ARCNN可以很好地去除金属伪影。对临床伪影颈部CT图像的实验结果表明了该方法的有效性和鲁棒性。此外,RL-ARCNN不需要特殊的CT扫描设计,也不需要投影原始数据。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值