HQQ量化学习资料汇总 - 快速准确的大模型量化工具

HQQ简介

HQQ (Half-Quadratic Quantization)是一种快速准确的模型量化器,无需校准数据即可在几分钟内量化最大的模型。它由 Mobius ML 团队开发,具有以下主要特点:

  • 量化速度非常快
  • 支持8、4、3、2、1比特量化
  • 适用于各种模型(LLM、视觉模型等)
  • 反量化步骤是线性操作,兼容各种优化的CUDA/Triton内核
  • 与PEFT训练兼容
  • 尝试与torch.compile完全兼容以加快推理和训练速度

HQQ性能

官方资源

安装使用

  1. 安装HQQ:
pip install hqq
  1. 基本用法:
from hqq.core.quantize import *

# 量化设置
quant_config = BaseQuantizeConfig(nbits=4, group_size=64)

# 替换线性层
hqq_layer = HQQLinear(your_linear_layer,
                      quant_config=quant_config,
                      compute_dtype=torch.float16,
                      device='cuda')

进阶使用

与Transformers集成

HQQ可以与Hugging Face的Transformers库无缝集成:

from transformers import AutoModelForCausalLM, HqqConfig

quant_config = HqqConfig(nbits=4, group_size=64)

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=torch.float16,
    device_map="cuda",
    quantization_config=quant_config
)

自定义量化配置

HQQ支持为不同层设置不同的量化配置:

q4_config = {'nbits':4, 'group_size':64}
q3_config = {'nbits':3, 'group_size':32}

quant_config = HqqConfig(dynamic_config={
  'self_attn.q_proj':q4_config,
  'self_attn.k_proj':q4_config,
  'self_attn.v_proj':q4_config,
  'self_attn.o_proj':q4_config,
  'mlp.gate_proj':q3_config,
  'mlp.up_proj'  :q3_config,
  'mlp.down_proj':q3_config,
})

更多资源

HQQ为大模型量化提供了一个高效、灵活的解决方案。通过本文提供的资源,相信读者可以快速上手并应用HQQ技术来优化自己的模型。如有任何问题,欢迎参考官方文档或在GitHub仓库中提出issue。

文章链接:www.dongaigc.com/a/hqq-quantitative-learning-resources
https://www.dongaigc.com/a/hqq-quantitative-learning-resources

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值