- 博客(1075)
- 收藏
- 关注

原创 如何从传统产品经理转行成为顶尖的AI产品经理?终于有人一次性说清楚了!
我们先来看看大模型对于AI产品经理的定义:通过这个定义,我们可以发现,AI产品经理相较于传统产品经理而言,主要的差异其实就是在对AI技术的理解与应用上。大部分传统产品经理并没有硬性的要求一定要懂技术,主要工作的重点更加偏向于需求分析、业务理解、用户体验、产品设计、策略等方面,懂技术只是一个加分项。但对于AI产品经理,了解诸如大模型、机器学习、深度学习、自然语言处理、计算机视觉等AI相关的技术,则是一项必要条件,因为只有懂AI,才能利用AI满足需求,设计出AI产品的解决方案。
2024-09-19 11:07:30
1631

原创 花3000元自学AI大模型后,她薪水涨了20%
我看到了一个充满无限可能的新世界”,在面试完AI产品经理这一岗位后,陈漫在社交平台上如此描述自己的感受。AGI大模型浪潮席卷全球,技术革新越是凶猛,人们的失业焦虑便越加强烈。为了应对AI带来的冲击,有些人决定“打不过就加入”,转身投向这个风口行业。陈漫便是转行潮中的一员。如今在社交媒体搜索“转行AI”“AGI”等关键词,就会涌现大量转行经验的帖子。不少博主呼吁大家抓紧时间转行进入AI领域,“真心建议大家冲一冲AI赛道”“抓住AI红利”,此类标题反复出现。
2024-08-08 10:48:25
1748

原创 字节大厂大模型面经,看完手撕面试官,非常详细收藏我这一篇就够了
以下是一些大模型大厂的面经,供参考:谷歌(Google):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。亚马逊(Amazon):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。微软(Microsoft):面试形式:电话面试、在线编程测试、现场面试。
2024-07-31 16:35:33
1545

原创 全方位大模型教程:从基础入门到实战应用
2023年大西洋彼岸的OpenAi公司,AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,,包含🔻 压缩技术中,为什么量化要优于剪枝、蒸馏?🔻 如何搜索裁剪阈值用于裁剪outlier?🔻 包含有异常值outlier的特征如何量化?🔻 模型剪枝的技术背景🔻 模型剪枝具体方法🔻 模型剪枝前沿方法🔻 语言模型剪枝实例🔻 AI作画–以文生图🔻 扩散模型是什么🔻 扩散模型工作拓展🔻 扩散模型带来的机遇🔻 RLHF的优点和挑战🔻 RLHF如何改善大模型性能🔻 RLHF的实际应用案例。
2024-07-28 09:00:00
2017

原创 AI 大模型之美 | 更新完结
AI 大模型的美感不仅体现在其高科技的外表和复杂的内在结构上,更体现在它们带来的科技进步和社会变革中。它们是人类智慧和技术创新的结晶,不断推动着人类社会走向更加智能化和可持续的未来。如何学习AI大模型?我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
2024-06-26 11:19:45
4694
原创 AI大模型学习全景指南:必读十本书籍,从技术内核到商业落地一网打尽!
在2025年人工智能技术加速迭代的今天,掌握大模型技术已成为开发者、产品经理乃至企业决策者的核心能力。本文精选十本覆盖大模型技术原理、开发实战、行业应用与伦理思考的权威著作,助你构建从理论到实践的完整知识体系,成为驾驭AI浪潮的顶尖人才。
2025-05-21 15:25:30
631
原创 大模型学习宝典:12本精选书籍(附PDF),助你高效掌握核心知识!
这篇文章推荐了12本大模型入门必读书籍,建议用一年时间系统学习。重点介绍了前两本:《基于GPT-3,ChatGPT,GPT-4等Transformer架构的自然语言处理》和《大模型应用开发极简入门:基于GPT-4和ChatGPT》。第一本书涵盖Transformer架构对比、NLP任务实践、图像处理等内容;第二书聚焦GPT-4和ChatGPT的应用开发。这些书籍可以帮助读者从基础到进阶掌握大模型技术,适合收藏并循序渐进学习
2025-05-21 15:21:14
606
原创 AIGC时代秘籍:大模型训练实战,内存优化策略助你高效打造训练体系!
请根据已编辑的文章内容,生成文章摘要本文介绍了训练大规模模型时的四种显存优化策略:混合精度训练、梯度检查点、梯度累积和FlashAttention。混合精度训练通过结合FP16和FP32计算,在减少显存占用的同时保持模型精度;梯度检查点和梯度累积主要优化中间结果的存储;FlashAttention则专门针对Transformer注意力层进行内存优化。这些方法分别针对模型参数、优化器状态、中间结果等不同内存开销部分进行优化,可显著提升大模型训练效率。
2025-05-21 15:16:32
362
原创 2025年AI大模型赋能企业数字化转型(文档)
在数字经济蓬勃发展的2025年,AI大模型正以前所未有的速度重塑企业运营模式,成为推动数字化转型的核心引擎。AI大模型已从实验室创新阶段进入产业落地期,技术能力突破、成本断崖式下降、多模态应用深化三大趋势,使企业能够以较低成本获取高性能AI能力,从而加速数字化转型进程。据《2025年人工智能指数报告》显示,达到GPT-3.5水平的系统推理成本在过去两年间下降了280倍,硬件成本每年降低30%,能效每年提升40%,这使得AI大模型从"奢侈品"逐渐转变为"必需品"。
2025-05-21 15:12:48
441
原创 梁文峰再发文,揭秘DeepSeek-V3硬件架构!
《大模型时代硬件协同设计的创新路径》摘要:本研究以DeepSeek-V3在2048块H800GPU上的训练实践为案例,揭示了硬件与模型协同设计的关键突破。通过MLA注意力压缩(70KB/token)、MoE架构(每token激活370亿参数)和FP8混合精度训练(精度损失<0.25%)三大核心技术,在保持模型性能的同时显著降低资源消耗。研究特别提出多平面Fat-Tree网络拓扑,较传统架构降低50%成本与30%延迟,并开源DeepGEMM等核心组件。针对硬件瓶颈,建议下一代架构应支持FP8高精度累加、Sca
2025-05-21 15:08:07
171
原创 LangGraph:如何用“图思维”轻松管理多Agent协作?
随着AI应用场景的复杂化,单一Agent在处理多任务时显得力不从心。传统链式调用框架如LangChain在动态决策和资源复用方面存在维护成本高、扩展性差的问题。LangGraph通过图结构模拟复杂任务流,其核心要素包括节点(Node)、边(Edge)和状态(State),支持动态编排如循环、分支和并行控制流。在多Agent协作实战中,LangGraph通过定义Agent节点和设计workflow逻辑,实现了异构Agent的协作与通信。与LangChain相比,LangGraph更适合动态、多角色协作的场景。
2025-05-21 15:05:50
434
原创 大模型面试题全攻略:常见问题与答案全解析_AI大模型文本摘要常见面试篇,一天就背完了
大模型面试问题通常涵盖模型原理、应用、优化及面试者的相关经验。常见问题包括:1. 大模型的定义及与传统模型的区别:大模型参数多、结构复杂,需更多数据和计算资源。2. Transformer模型的理解与应用:Transformer通过自注意力机制处理序列数据,广泛应用于NLP任务。3. 大模型性能评估:常用指标包括准确率、召回率、F1值等,生成任务还需关注流畅性、多样性等。4. 大模型优化:通过模型结构优化、分布式训练、剪枝、量化等手段提升性能与效率。5. 大模型经验分享:面试者可分享具体项目经验或表达学习意
2025-05-20 16:50:00
591
原创 什么是RAG?大模型 RAG 是什么?一文搞懂RAG
大模型RAG(Retrieval-Augmented Generation)是一种结合检索与生成技术的人工智能模型,旨在增强大型语言模型(LLMs)在特定任务中的表现,特别是在需要访问外部知识库或实时信息的场景中。RAG通过检索模块从知识库中获取相关信息,并将其与生成模型结合,生成更准确、详尽的答案。其核心优势在于解决LLMs存储容量有限、知识更新滞后等问题,广泛应用于开放式问答、专业领域问答和对话系统等场景。随着大模型技术的快速发展,相关岗位需求激增,初级工程师平均薪资达28K,掌握AI工具成为提升职业竞
2025-05-20 16:32:50
611
原创 多模态大模型LoRA微调全攻略!一文吃透核心原理+实战
在大规模预训练语言模型(如GPT-3)的下游任务适应中,如何高效减少可训练参数和计算资源消耗,同时避免现有方法(如Adapter或Prefix-tuning)的局限性(如推理延迟或序列长度限制),是一个关键问题。全量微调需要为每个任务存储与原模型相同规模的参数,导致高昂的存储和硬件成本。现有方法如Adapter引入额外推理延迟,而Prefix-tuning占用输入序列长度,限制任务处理能力。LoRA(Low-Rank Adaptation)通过冻结预训练模型权重,在Transformer的每一层注入可训练的
2025-05-20 16:29:14
821
原创 DeepSeek-R2预热升级!从“学霸”到“学神”,普通人能用它做什么?
2025年开年,中国AI大模型DeepSeek-R1凭借开源、低价、高性能横扫全球,让硅谷巨头“火烧屁股”。然而,短短一个月后,DeepSeek-R2提前杀入战场!这场“史诗级进化”不仅是技术参数的飙升,更预示AI将从“工具”化身“同事”,彻底改变我们的工作与生活。普通用户如何抓住这波红利?R2对比R1究竟强在哪?一文说透!
2025-05-20 16:25:43
224
原创 AI竞争提速:OpenAI首席产品官确认GPT-5即将发布,这次又会带来什么变化?
GPT-5即将发布:OpenAI正整合GPT和o系列模型,推出更强大的GPT-5;研发融合创新:研究与产品开发紧密结合,不再是单纯的研究公司;Deep Research惊艳:被称为"自ChatGPT以来最佳产品",展现AGI潜力;AI编程提速:预测2026年实现编程99%自动化,比竞争对手预期更早;教育变革:愿景是AI为每个孩子提供个性化导师,技术已准备就绪;机器人布局:已开始关注机器人技术,计划从数字世界拓展到现实应用;
2025-05-20 16:22:46
342
原创 Adobe首发多Agent、跨模态框架MDocAgent:复杂文档理解性能爆炸12%,错误率直降21%
文档问答太难了 含有丰富文本和视觉元素(如图表、图像等)的长文档,在进行文档问答时,现有的方案有其局限性: 传统的大型语言模型(LLMs)仅能处理文本信息 大型视觉语言模型(LVLMs)虽然能够处理视觉内容,但在处理长文档时往往效率低下,并且难以对文本和视觉信息进行有效的融合与推理。 现有的检索增强生成(RAG)方法虽然能够从长文档中提取关键信息,但它们通常仅依赖于单一模态(文本或图像)进行检索,缺乏跨模态的信息整合能力。
2025-05-20 16:20:18
316
原创 大模型学习路线(非常详细)收藏这一篇就够了!_大模型学习路线
学习大模型与AI技术的基础路径包括打好数学与编程基础。数学方面,需掌握线性代数(矩阵、向量等)、微积分(导数、积分等)和概率统计(概率分布、贝叶斯定理等),推荐课程如Khan Academy和MIT的公开课。编程方面,Python是核心语言,需熟练使用,同时理解数据结构与算法(如数组、链表、排序等),推荐Codecademy和Coursera的课程以及LeetCode的算法练习。这些基础能力是深入学习AI和大模型的关键。
2025-05-19 21:44:38
1245
原创 AI产品经理成长之路:AI产品经理从零基础到精通,非常详细收藏这一篇就够了
AI产品经理与通用型产品经理在思考框架上相似,均需经历产品立项、需求分析、设计、执行管理、验收和迭代等阶段。然而,AI产品经理的思维模式不同,需以AI技术为核心,提供全新解决方案,甚至改变原有业务流程。AI产品经理分为toB、toC和AI硬件产品经理,分别侧重实际效果、用户体验和使用场景。成为AI产品经理需掌握AI应用场景、技术、数据的重要性及评价指标,并熟悉AI算法和模型的使用场景及其优劣势。AI产品的核心是数据,有效数据与合适算法结合才能生成符合需求的AI模型。
2025-05-19 21:42:29
733
原创 初学者必看大模型微调指南:Unsloth官方微调技巧大公开!
从你早上睁眼看到的今日头条推荐,到深夜刷到的抖音神评,人工智能大模型已经成为我们工作生活不可或缺的部分。但通用模型在专业场景的"人工智障"表现,让微调技术成为专业领域AI落地的最后1公里。
2025-05-19 21:39:07
827
原创 AI搜索发展洞察报告2025|附26页PDF文件下载
2024年底至今,AI搜索赛道持续涌入更多玩家、开源推理大模型DeepSeek-R1引发行业变革,共同助推AI搜索于技术、产品及场景多维升级,加速向生产力工具演变,其入口及生态价值得到进一步放大。本报告主要从行业热点、厂商动作层面分析AI搜索近期发展,并对行业未来趋势进行洞察与研判。
2025-05-19 21:36:56
485
原创 知识图谱落地!纯本地接入大模型+RAG框架中!
本文详细介绍了如何在本地部署知识图谱,并将其接入开发环境。主要内容包括:配置本地大语言模型(LLM)和中文文本嵌入模型,连接NebulaGraph数据库并创建图空间,使用llama_index加载本地文档并构建图索引,将知识图谱数据存储到NebulaGraph中,并通过可视化工具生成HTML格式的知识图谱。此外,文章还对比了常规向量语义查询和知识图谱查询的结果,展示了知识图谱在提高回答准确性方面的优势。最后,提供了完整的代码文件、环境配置和操作说明,方便用户直接运行和部署。
2025-05-19 21:34:58
628
原创 一文了解Text Embedding模型:从text2vec、openai-text embedding到m3e、bge
北京智源人工智能研究院于2023年8月2日发布了中英文语义向量模型BGE,该模型采用了RetroMAE预训练算法,旨在提升语义表征能力。BGE模型通过高效预训练和大规模文本微调,增强了语义向量的判别力,并在多任务场景下展现了通用能力。RetroMAE算法包括编码和解码两个模块,通过BERT编码器生成句向量,并通过一层transformer解码器重建句子,以提高模型在检索任务上的表现。此外,BGE模型还通过负采样和难负样例挖掘进一步优化了性能。BGE模型的开源地址和详细技术文档已在Hugging Face和G
2025-05-19 21:30:50
407
原创 13家单位共同起草全国首部AI大模型私有化部署标准
由中国电子商会归口管理,汇集众多企业、大模型专家提供支持,智合标准中心(北京之合网络科技有限公司)组织起草的《人工智能大模型私有化部署技术实施与评价指南》团体标准(以下简称《标准》)现已正式立项。这是国内首部针对AI大模型私有化部署的标准,目前该标准正在征集起草单位、起草人。
2025-05-19 21:28:47
715
原创 什么是大模型?什么是大模型学习路线?LLM大模型学习教程,非常详细收藏这一篇就够!
本文介绍了大模型(LLM)的快速学习路径,旨在帮助学习者掌握大模型及自然语言处理(NLP)的基础知识,熟练调用GPT API,并实现模型微调和外挂数据库等主流技术。学习路径分为四个步骤:1)掌握Python和Linux基础,学习NLP相关知识;2)学习GPT API调用及Prompt设计;3)了解模型微调流程,构建QA对并进行微调;4)学习RAG技术,实现基于大模型的外挂数据库部署。文章强调大模型技术的广泛应用和市场需求,提供了丰富的学习资源和工具,帮助学习者从基础到实战快速提升技能。
2025-05-16 21:26:17
891
原创 Qwen3大模型微调入门实战(完整代码)
Qwen3是阿里通义实验室最近开源的大语言模型,发布时便登顶了开源LLM榜单第一名。同时,Qwen系列模型也超越LLaMA,成为了HuggingFace上最受欢迎的开源LLM。可以说,不论是进行研究学习,还是应用落地,Qwen已经逐渐成为开发者的最优选项之一。那么,以Qwen3作为基座大模型,通过的方式,实现垂直专业领域聊天,甚至,是学习的入门任务。
2025-05-16 21:22:50
827
原创 解析大模型常用微调方法:P-Tuning、Prefix Tuning、Adapter、LoRA
预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务时可能无法达到最佳效果,比如ChatGPT、混元、文心一言在回答一些常识性问题时表现的非常出色,但在物理、化学或编程等专业性问题上往往变的傻了吧唧。怎样让大模型更好地适用于特定场景?此时我们就需要利用特定任务的数据集来进一步训练模型,通过模型精调让全能型大模型变的专而精。这种针对性的精调训练能够使模型更加专注于目标任务的特征,从而提高其在特定任务上的准确性和效率。
2025-05-16 21:17:14
749
原创 单卡4090上用最新LLaMA-Factory微调qwen3 最新模型
实测用最新的 LLaMA-Factory 项目 SFT 微调最新的 qwen3 模型,只需如下几步:(LLaMA-Factory 在5.1之前以第一时间完成了 Qwen3 的深层次优化,包括训练和推理逻辑)LLaMA-Factory 项目提供了镜像构建的 dockerfile: https://github.com/hiyouga/LLaMA-Factory/blob/main/docker/docker-cuda/Dockerfile只需根据自己的环境略作修改即可。比如我的环境cuda驱动是12.1,所以
2025-05-16 21:13:51
533
原创 本地部署DeepSeek+Dify构建AI 智能体
是专为大规模语言模型(Large Language Model, LLM)应用设计的一整套工具和服务,旨在帮助开发者更高效地构建、管理、部署和维护基于 LLM 的应用。这类平台通过提供从模型选择、数据处理、训练调优到部署监控的全流程支持,简化了 LLM 应用的开发复杂度,使开发者能够专注于业务逻辑和创新,而无需深入底层技术细节。
2025-05-16 21:11:54
932
原创 大模型动态:Qwen3系列模型正式发布 | 知识科普:模型参数、MoE、Dense
本期科普知识:• 什么是模型的“参数“?• 什么是MoE、Dense?
2025-05-16 21:07:37
772
原创 提示词工程对大模型应用的重要性
提示词是大模型与外界交互的唯一通道,因此提示词的重要性远比我们想象中的要重要。提示词或者说提示词工程,说起来可能大家多多少少都知道是怎么回事;但可能很多人并没有意识到提示词工程对大模型的重要性。提示词是人与大模型沟通的桥梁,就像我们要想使用电脑就离不开鼠标键盘一样;不管你是做AIGC也好,做RAG、Agent也罢,或者其它任何与大模型相关的技术或应用,都离不开提示词的存在。总之一句话,任何关于大模型的应用都需要提示词。提示词的重要性。
2025-05-16 21:05:51
714
原创 大模型AI Agent入门指南:从零开始,轻松成为LLM大师,掌握AI技术新趋势!非常详细收藏这一篇就够
AI智能体(Agent)是具备自主决策能力的人工智能系统,能够感知环境、制定计划并采取行动。虽然它并非通用人工智能(AGI),但被认为是通往AGI的重要路径。随着大语言模型(LLM)的发展,智能体的能力得到显著提升,LLM为其提供了强大的“思考力”。智能体的核心模块包括任务管理、工具调度、记忆、反思和环境感知,这些模块协同工作,使智能体能够从理解任务到完成任务的闭环操作。例如,智能体可以自动分析竞争对手市场策略,并生成报告和优化建议。智能体的发展标志着AI在复杂任务处理上的进步,为未来AGI的实现奠定了基础
2025-05-15 17:58:03
1051
原创 大模型产品经理成长指南:从AI产品经理入门到精通,全面解析学习路线与职业发展蓝图_大模型产品经理学习路线
随着人工智能技术的快速发展,大型预训练模型(大模型)的应用日益广泛,对能够理解和管理这类复杂产品的专业人才需求增加。本文详细介绍了成为大模型产品经理的学习路线,分为三部分:构建基础、深化理解和实战演练。构建基础包括技术基础知识、产品管理理论和深度学习入门;深化理解涵盖大规模预训练模型概览、数据处理与特征工程、性能优化与部署;实战演练则包括参与开源社区、开展个人项目和建立人脉网络。通过系统学习和实践,帮助读者成为合格的大模型产品经理。
2025-05-15 17:53:51
898
原创 【如何学习AI】|我问AI如何利用各种AI数据大模型来提升工作效率?
AI大模型如GPT-4、Claude、PaLM和StableDiffusion等,正成为提升工作效率的强大工具。这些模型在文本生成、信息总结、数据洞察、自动化流程和多模态处理等方面展现出核心优势。具体应用场景包括文本处理与内容生成、数据分析与决策支持、会议与沟通优化、创意与设计、编程与开发以及知识管理与学习。为了高效使用这些大模型,需要掌握精准提问、迭代优化、工具链整合和数据安全等关键技巧。此外,推荐的AI工具组合和注意事项也是确保成功应用AI大模型的重要因素。通过合理利用这些AI工具,职场人士可以将AI转
2025-05-15 17:50:48
854
原创 Qwen3-30B-A3B 本地部署以及全能力测试
本文详细介绍了Qwen3-30B-A3B模型的本地部署过程及其全面能力测试。通过LMStudio等工具,用户可以在个人设备上部署该模型,并体验其在数学推理、逻辑分析、创意写作、多语言翻译及代码生成等方面的强大能力。Qwen3-30B-A3B模型采用创新的双模推理设计,支持119种语言和方言,在编码、推理、多语言理解等方面实现了显著突破。本文还提供了所有提示词,方便用户进行测试和验证。通过合理利用Qwen3的特性,用户可以在各自领域获得更高效、更智能的语言处理体验。
2025-05-15 17:47:19
620
原创 业界首份《云智算技术白皮书》(2025)发布|附30页PDF文件下载
在2025中国移动云智算大会上,业界首份《云智算技术白皮书》发布,提出了下一代云智算体系架构和十大关键技术方向,标志着云计算向云智算的升级。白皮书详细阐述了云智算的发展背景、内涵及关键技术,为行业技术革新奠定基础。同时,报告指出大模型应用呈现爆发式增长,相关岗位需求激增,初级工程师平均薪资达28K,但70%企业面临模型调优难题。报告还提供了大模型AI学习路径,包括初阶、高阶应用、模型训练及商业闭环四个阶段,旨在帮助从业者提升生产效率,抓住AI技术带来的职业机遇。
2025-05-15 17:44:51
843
原创 详解世界模型:AI下一个重大拐点?Google、NVIDIA、Meta如何布局
“世界模型”被视为实现强人工智能的关键路径,它使AI能够像人类一样通过抽象理解进行决策,而不仅仅依赖数据记忆。这一概念源于人类大脑的“心理模型”,通过模拟环境来预测和规划行动,从而节省资源并提高效率。世界模型通常包括状态表征、动态模型和奖励模型三部分,能够预测未来状态并支持复杂决策。自1990年Richard S. Sutton提出Dyna算法以来,世界模型在深度学习和强化学习的融合下取得了显著进展,如2018年David Ha和Jürgen Schmidhuber的“World Models”论文,以及后
2025-05-15 17:43:08
730
原创 为什么Google的Agent2Agent协议需要Apache Kafka
你有一个CRM代理在忙着自己的事,一个数据仓库代理在处理数据,一个知识机器人在悄悄的整理文档,当它们都没有分享它们的知识。我们没有建立一个智能互联的生态系统,而是被困在孤立的智能领域中。一座代理孤岛
2025-05-15 17:40:47
965
原创 程序员转行大模型指南:五大热门岗位推荐,抓住IT行业最后的风口,关于大模型赋能程序员,看我这篇就够了!
数据科学家利用大模型进行数据分析和预测,通过挖掘海量数据中的潜在规律,为企业决策提供支持。他们需要掌握机器学习、统计学和数据处理技术,能够构建和优化模型,解决复杂的业务问题。数据科学家的工作涉及数据清洗、特征工程、模型训练与评估等环节,要求具备扎实的编程能力和数据分析经验。该岗位适合对数据驱动决策感兴趣,并具备较强逻辑思维和问题解决能力的程序员。应用领域包括金融、医疗、零售等多个行业。
2025-05-14 17:57:22
780
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人