- 博客(2167)
- 收藏
- 关注
原创 大模型工程师完全指南:从概念到实践的全方位学习路径,AI大模型应用开发学习路线
本文从工程师视角系统介绍大语言模型(LLM)的核心概念、应用场景及工作原理。文章详细解析了LLM在医疗、教育、软件开发等领域的应用价值,对比了工程思维与算法思维的差异,并阐述了LLM基于海量数据训练的概率生成特性。通过实际案例展示了AI辅助编程实现微信小程序的完整流程,帮助读者理解LLM从理论到实践的转化过程。最后简要概述了从零构建LLM的关键步骤,为工程师提供系统性学习路径。
2025-12-16 14:59:25
1250
原创 如何从传统产品经理转行成为顶尖的AI产品经理?终于有人一次性说清楚了!
我们先来看看大模型对于AI产品经理的定义:通过这个定义,我们可以发现,AI产品经理相较于传统产品经理而言,主要的差异其实就是在对AI技术的理解与应用上。大部分传统产品经理并没有硬性的要求一定要懂技术,主要工作的重点更加偏向于需求分析、业务理解、用户体验、产品设计、策略等方面,懂技术只是一个加分项。但对于AI产品经理,了解诸如大模型、机器学习、深度学习、自然语言处理、计算机视觉等AI相关的技术,则是一项必要条件,因为只有懂AI,才能利用AI满足需求,设计出AI产品的解决方案。
2024-09-19 11:07:30
1751
1
原创 花3000元自学AI大模型后,她薪水涨了20%
我看到了一个充满无限可能的新世界”,在面试完AI产品经理这一岗位后,陈漫在社交平台上如此描述自己的感受。AGI大模型浪潮席卷全球,技术革新越是凶猛,人们的失业焦虑便越加强烈。为了应对AI带来的冲击,有些人决定“打不过就加入”,转身投向这个风口行业。陈漫便是转行潮中的一员。如今在社交媒体搜索“转行AI”“AGI”等关键词,就会涌现大量转行经验的帖子。不少博主呼吁大家抓紧时间转行进入AI领域,“真心建议大家冲一冲AI赛道”“抓住AI红利”,此类标题反复出现。
2024-08-08 10:48:25
1841
1
原创 字节大厂大模型面经,看完手撕面试官,非常详细收藏我这一篇就够了
以下是一些大模型大厂的面经,供参考:谷歌(Google):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。亚马逊(Amazon):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。微软(Microsoft):面试形式:电话面试、在线编程测试、现场面试。
2024-07-31 16:35:33
1682
1
原创 全方位大模型教程:从基础入门到实战应用
2023年大西洋彼岸的OpenAi公司,AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,,包含🔻 压缩技术中,为什么量化要优于剪枝、蒸馏?🔻 如何搜索裁剪阈值用于裁剪outlier?🔻 包含有异常值outlier的特征如何量化?🔻 模型剪枝的技术背景🔻 模型剪枝具体方法🔻 模型剪枝前沿方法🔻 语言模型剪枝实例🔻 AI作画–以文生图🔻 扩散模型是什么🔻 扩散模型工作拓展🔻 扩散模型带来的机遇🔻 RLHF的优点和挑战🔻 RLHF如何改善大模型性能🔻 RLHF的实际应用案例。
2024-07-28 09:00:00
2100
1
原创 Java程序员如何转行大模型开发?超详细指南+学习资源,建议收藏_2025最新程序员转行AI大模型教程(非常详细)
文章介绍了Java程序员转型大模型开发的完整路径,包括学习基础知识、掌握工具框架、提升编程能力、储备数学知识和项目实践五大步骤。同时分析了Java程序员的转型优势,详细列出了AI时代的新兴技术岗位及所需知识体系,并提供了大模型学习路线和丰富资源,帮助程序员系统掌握AI技能,实现职业转型。
2025-12-31 14:57:36
638
原创 突破大模型Agent文档感知瓶颈:基于TextIn + Coze的智能文档解析实践
摘要:本文提出使用TextIn文档智能解析引擎解决大语言模型智能体处理复杂文档时的感知瓶颈问题。通过将PDF、Word等复杂文档转化为高质量Markdown结构化文本,有效解决了语义边界模糊和结构化信息丢失问题。基于TextIn+Coze平台构建的论文分析助手Agent方案,实现了对学术论文的高效解析与问答,单篇论文解析仅需2.8秒,显著提升了处理效率。该方案为复杂文档的智能化处理提供了有效解决方案。
2025-12-31 14:56:02
607
原创 英伟达Alpamayo-R1开源:揭秘VLA大模型的训练方法与技术优势
本文详细解析英伟达开源的VLA推理大模型Alpamayo-R1,该模型通过结构化"因果链"(CoC)框架提升自动驾驶决策能力。文章介绍了三大技术创新:CoC数据集解决因果推理问题、模块化VLA架构实现高效多模态处理、多阶段训练策略融合强化学习。实验显示,该模型在复杂场景中轨迹预测准确率提升12%,安全性指标显著改善,为L4级自动驾驶提供了技术路径。
2025-12-31 14:54:38
621
原创 DeepSeek大模型本地部署全教程,小白也能轻松上手,打造自己的AI管家
本文详细介绍了DeepSeek大模型的本地部署流程。首先需下载安装Ollama工具,然后根据硬件配置选择合适的模型版本(1.5b至671b不等),通过命令行完成模型安装。同时提供了可视化工具Chatbox的安装指南,使交互更加便捷。DeepSeek作为开源大语言模型,支持离线运行,无需API费用,用户可根据自身需求打造专属AI助手。文中还附有详细的配置说明、下载链接和安装截图指引,帮助用户顺利完成本地部署。
2025-12-31 14:52:19
683
原创 EvoLM开源套件:大模型训练全生命周期透明化,发现数据饱和点提升训练效率
EvoLM研究构建覆盖预训练到强化学习全阶段的透明模型套件,训练超100个1B/4B参数模型并开源。核心发现预训练存在"饱和区":数据量超过模型参数量80-160倍后,继续增加数据会损害下游OOD任务性能,挑战"数据越多越好"的认知。研究还揭示数据回放策略缓解灾难性遗忘,适度监督微调平衡ID与OOD性能,而强化学习主要增强答案置信度而非推理能力。这些发现为模型训练资源分配提供关键参考。
2025-12-31 14:50:01
559
原创 大模型学习全攻略:从零基础到项目实战(建议收藏)_大模型入门教程,零基础从0开始
大模型是包含超大规模参数的神经网络,分为语言、音频、视觉和多模态类型,通过预训练和微调获得能力。已广泛应用于金融、医疗、教育等领域,未来趋势是轻量化和终端化。但面临就业冲击、版权争议、算法偏见等挑战。系统学习应从基础到进阶,结合理论学习和项目实践,掌握核心原理和实际应用。
2025-12-30 16:33:39
1143
原创 DeepSpeed大模型训练优化全攻略:从安装到分布式训练,小白也能轻松上手
DeepSpeed是微软开源的大模型训练优化库,通过ZeRO技术显著减少GPU显存占用,支持训练千亿至万亿参数模型。其核心模块包括训练优化(ZeRO技术实现显存节省)、推理加速(模型并行与流水线并行)、模型压缩(稀疏注意力等优化)和科学计算应用。文章详细介绍了DeepSpeed与Transformers的集成方式、安装配置流程(包括GCC更新和源码编译),以及T5模型训练方法。通过ZeRO-2优化技术示例展示了如何在单机多卡和分布式环境下高效训练7.7亿参数的T5-Large模型,为资源受限场景下的大模型训
2025-12-30 16:31:25
952
原创 Obsidian+Ollama打造完全本地隐私RAG知识库指南
本文详细介绍了如何使用Obsidian结合本地Ollama+Qwen 3模型构建完全本地化的隐私保护RAG知识库。通过文档读取、切片、向量化存储等步骤,解决了云端AI助手的隐私泄露风险和网络依赖问题。作者使用Electron构建的MyGPT应用实现了基于本地知识库的智能问答功能,支持直接跳转原始文档,打造了一个完全离线、绝对隐私的私人AI助理。
2025-12-30 16:30:27
990
原创 【必学收藏】大模型入门全攻略:从数学基础到工程实践的完整路径
大模型(LLM)学习指南摘要 本文系统介绍了大模型学习的完整路径,分为基础、科学家和工程师三部分: 基础部分:涵盖数学基础(线性代数、微积分、概率统计)、Python编程(数据处理、机器学习库)、神经网络(结构、训练优化)和NLP(文本处理、词嵌入、RNN) 科学家部分:深入LLM架构(Transformer、注意力机制)、数据集构建(合成数据生成、数据过滤)、预训练微调、模型评估与量化 工程师部分:聚焦模型运行、RAG系统构建、推理优化和部署实践 文中提供了丰富的学习资源推荐,包括3Blue1Brown、
2025-12-30 16:27:48
527
原创 GitHub 上 10 个令人惊艳的 Agent 开发平台,太顶了
AutoGPT 是 AI Agent 领域的鼻祖级项目,现在已经 18 万+的 Star 了。与聊天机器人不一样,AutoGPT 能够自主地将一个大目标拆解为子任务,并利用互联网搜索、本地文件等操作来一步步实现目标。
2025-12-30 16:26:24
1011
原创 AI智能体架构与应用:让系统自主完成业务目标的黑科技
文章阐述了AI智能体如何从问答交互发展为能自主理解上下文、规划路径、调用工具的系统。介绍了智能体的三大核心能力突破(自主决策、世界模型构建、持续学习),分析了架构设计与应用场景,探讨了技术优势、挑战与伦理问题。文章强调,智能体的价值在于构建认知-行动闭环与体系化工程能力,让"让系统去办成一件事"成为可能。
2025-12-29 15:56:04
1028
原创 【必收藏】2025 AI Agent完全指南:从入门到精通的大语言模型应用
摘要: 本文系统分析了AI Agent的技术架构、演进路径及大语言模型(LLM)的赋能机制,结合国内外案例探讨其产业落地。研究指出,AI Agent正从“有限自主”向“自主进化”跨越,2025年将呈现多模态融合、自适应学习等六大趋势,并深度应用于医疗、金融等领域。同时,文章剖析了技术挑战与解决方案,为AI研发与产业融合提供参考。 关键词: 大语言模型;AI Agent;智能体;多模态融合;自适应学习
2025-12-29 15:55:05
663
原创 AI大模型学习全攻略:30节课程+企业项目实战+500+论文资源包,助你高薪入局AI时代_AI大模型教程来了(大模型从入门到实战)
文章提供了一套完整的AI大模型学习体系,包含30节课程涵盖理论、论文带读和实战项目,系统介绍NLP大模型、模型压缩、剪枝技术、扩散模型、RLHF等前沿技术。附赠500+论文和104G学习资源包,强调大模型技术的高就业前景(平均薪资3.7万+)和高成长性,提供从零基础到进阶的学习路线,帮助学习者系统掌握大模型技术,实现职业发展和能力提升。
2025-12-29 15:53:39
1226
原创 【收藏必备】从五行代码到生产级应用:LangChain 1.0如何解决AI开发痛点
LangChain 1.0发布,解决了AI应用从原型到生产的最后一公里难题。新版本通过create_agent接口保持易用性,引入中间件系统提供扩展性,支持动态模型选择和多模型协作。与LangGraph形成互补,前者适合快速开发标准应用,后者提供深度定制能力。关键创新包括:持久化执行、检查点恢复、流式传输和人机协作接口,使AI开发从"黑魔法"转向工程化。同时顺应多模型趋势,支持根据任务特征智能选择专家模型,实现效果与成本的平衡。
2025-12-29 15:52:27
665
原创 AI智能体与大模型:从认知到执行的跃迁,技术架构与应用场景深度解析(必藏)
AI智能体与大模型存在本质差异:大模型基于Transformer架构,擅长认知任务但无法自主执行;AI智能体则采用感知-规划-行动系统架构,将大模型作为"大脑"并整合环境感知、工具调用和长期记忆能力,实现从认知到执行的闭环。两者互补而非替代,企业应分阶段应用:先利用大模型提升效率,再针对高频场景开发智能体,最终构建企业级智能体网络。技术架构上,大模型是单体神经网络,而智能体是多模块系统;能力边界上,大模型侧重认知智能,智能体强调执行闭环;应用场景上,大模型适合辅助任务,智能体则能实现全流
2025-12-29 15:51:14
212
原创 零基础学习大模型应用开发,快速掌握个人知识库助手构建
"动手学大模型应用开发"是一个面向小白开发者的开源教程,通过个人知识库助手项目实践,帮助零基础开发者快速掌握大模型应用开发。教程涵盖大模型简介、API调用、开发流程、数据库搭建、Prompt设计等核心内容,基于LangChain框架统一封装多种LLM API。无需算法基础,只需基础Python技能,数小时内即可学完并独立构建大模型应用,是入门大模型开发的理想选择。
2025-12-28 17:59:48
1163
原创 2025年AI技术革命:从训练范式到应用的全面解析 | 程序员必看收藏指南
2025年AI领域迎来多项变革:LLM训练引入RLVR可验证奖励强化学习,模型自发发展推理能力;Cursor等工具构建大模型与应用间的桥梁;Claude Code将AI Agent植入本地电脑;Vibe编程范式使非专业者也能开发软件;Gemini Nano Banana推动AI向视觉理解跨越。这些技术突破重塑了软件开发和交互方式,预示2026年将是AI应用爆发年,个人与企业需持续适应新技术迭代。
2025-12-28 17:58:51
894
原创 2025年大模型六大突破,从小白到专家必看,2025大模型年度回顾
2025年LLM领域迎来六大范式转变:基于可验证奖励的强化学习(RLVR)显著提升模型推理能力;LLM展现出不均衡的"幽灵式"智能;Cursor等应用开创LLM应用新层级;Claude Code实现本地AI智能体;"氛围编码"降低编程门槛;Gemini Nano预示LLM图形界面未来。这些变革不仅重塑了技术格局,也为开发者和小白提供了前所未有的学习与应用机会。
2025-12-28 17:57:56
972
原创 大模型时代来临!AI产品经理转型必备指南:技能评估+学习路径+实战方法,强烈建议收藏
AI产品经理转型为大模型产品经理的五大关键:1.掌握大模型技术原理与趋势,具备数据处理能力;2.通过兴趣、技能、经验等多维度自我评估转型可行性;3.系统学习大模型知识,包括原理、应用及优劣势;4.培养场景创新能力,挖掘大模型在各领域的应用价值;5.提升跨团队协作能力,推动大模型产品落地。转型需技术理解与产品思维并重,建议结合自身情况循序渐进。
2025-12-27 14:49:30
1064
原创 揭秘MCP如何革命性提升RAG:从工具单一到智能选择
MCP驱动的智能体化RAG系统解决了传统RAG工具单一、缺乏判断的痛点。通过统一接口、模块化设计和智能路由机制,赋予AI"工具选择大脑",使其能根据问题性质自动选择最佳工具链。该架构显著提升开发效率、优化性能,并拓展应用场景,从"知识库"升级为"全能操作手",推动RAG成为真正的智能操作中枢。
2025-12-27 14:48:36
701
原创 AI驱动研发革命:从MCP到自动化部署的实战指南
本文提出一个基于大模型的AI辅助研发体系,通过MCP连接飞书、Figma等工具,以ApiFox为契约驱动,构建从需求规划、AI辅助开发到自动化部署的完整闭环。体系采用"AI辅助+契约驱动+自动化"三大支柱,将AI定位为"副驾驶",确保代码与需求、设计高度一致,实现工业级健壮性,形成不断自我优化的正向循环。
2025-12-27 14:47:20
665
1
原创 AI催生的30类新职业!全网最全!(强烈建议收藏)
27年前,新浪、网易、搜狐等门户网站让互联网走进了千家万户,催生了数以万计的新岗位,彻底重塑了我们的工作和生活。时间来到2025年,以**深度求索(DeepSeek)** 等公司为代表的AI大模型技术,几乎在一夜之间让人工智能的应用在全国得到普及。我们相信,AI的浪潮将比互联网来得更猛烈、更彻底。它在替代部分工作的同时,**正催生出规模更大、价值更高的新兴岗位**。
2025-12-27 14:46:25
800
原创 RAG技术入门:检索增强生成如何让大模型更强大
RAG(检索增强生成)结合信息检索与大模型提示,通过从外部知识库检索相关信息并注入提示中,增强大模型回答能力。其流程包括数据准备(提取、分割、向量化、入库)和应用阶段(提问、检索、注入提示、生成答案)。RAG解决了大模型无法获取最新和私有信息的问题,广泛应用于企业内部问答、电商客服等场景,显著提升回答准确性和专业性。
2025-12-27 14:45:19
904
原创 大模型入门必看,我的大模型学习路线完整版,AI大模型核心技术全解析:从基础到应用的系统性学习指南
本文系统介绍AI大模型的五个核心层次(基础层、智能体层、增强层、安全协议层及多模态),涵盖18个关键概念。基础层包括大语言模型、Transformer架构、向量表示等技术;智能体层涉及自主决策系统、记忆机制和任务编排;增强层和安全层则聚焦模型优化与风险防控。每个概念详细解释定义、技术原理、应用场景及未来趋势,并通过实际案例展示应用价值。文章为初学者提供从基础到应用的系统性学习指南,包含技术演进路线和实用资源,是掌握大模型技术的全面参考。
2025-12-26 10:16:26
1194
原创 收藏这份大模型学习路线图,让你少走弯路!_2026首发版,自学AI大模型的正确顺序
本文提供了一份系统化的大模型学习路线图,分为7个阶段:从数学编程基础、机器学习、深度学习入门到NLP基础、大规模语言模型、实际应用及持续进阶。每个阶段详细列出了核心学习内容和推荐书籍、课程等资料,帮助读者从零开始系统掌握大模型技术,并提供了实战案例和免费学习资源获取方式。
2025-12-26 10:13:14
581
原创 大模型学习全攻略:从技术到应用,抓住AI时代红利_转行风口上的AI大模型开发,能不能挽救我的职业生涯?
文章分析了大模型领域算法工程师和应用工程师两类岗位,建议后者作为转行选择。强调转行前应先业余时间尝试,避免盲目跟风。提供了完整学习路径,包括技术路线图、脑图、书籍、实战案例和面试资料,帮助零基础学习者系统掌握大模型技术,抓住AI时代红利。
2025-12-26 10:11:03
772
原创 多智能体框架调研:10个主流 AI Agent 框架
主流多智能体框架分类与特点分析 本文系统梳理了当前主流的多智能体框架,从学习、开发到生产三个层级进行分类: 学习框架(如Swarm)适合教学入门,具有轻量易用、透明可控的特点,但缺乏生产级支持。 开发框架(如OpenAI Agents SDK、Qwen-Agent)适合构建测试应用,提供灵活的多智能体协作能力和扩展性,但企业级功能尚待完善。 生产框架(如MetaGPT、Dify、BeeAI)适合实际部署,具备企业级功能如低代码开发、多模型兼容和智能任务调度,但存在定制受限、资源消耗大等问题。 各框架迭代迅速
2025-12-26 10:08:23
662
原创 RAG检索总踩坑?手把手教你微调Rerank模型,精准识别干扰项(附完整源码)
文章摘要:本文详解如何通过微调Rerank模型解决RAG系统中Embedding召回干扰项的问题。Rerank采用Cross-Encoder架构,通过全注意力机制精准捕捉Query与Document间的逻辑关系。作者提供了完整解决方案:1)构建含硬负例的高质量数据集;2)动态调整Batch Size、Epochs等关键参数;3)优化训练流程。实验证明,微调后的模型能有效压制干扰项得分,显著提升区分度,其中数据质量和Batch Size优化是性能提升的关键因素。文章包含政务领域真实调优案例,提供数据生成、模型
2025-12-26 10:06:47
522
原创 从小白到专家:AI大模型学习路线(附104G资源包),建议收藏!_AI大模型学习路线(非常详细)
本文提供了从零基础到进阶的AI大模型完整学习路线,涵盖数学与编程基础、机器学习入门、深度学习深入、大模型探索及进阶应用。系统介绍了各阶段所需理论知识、实践项目及推荐资源,并提供了社区参与和持续学习的方法,帮助读者全面掌握AI大模型技术,实现从入门到专家的成长路径。
2025-12-25 14:27:32
663
原创 【程序员必看】掌握MCP、RAG、Agent:让你秒变AI达人,技术干货值得收藏
文章介绍了AI领域的三大核心技术:MCP(模型上下文协议)作为"万能转换器"统一工具接口;RAG(检索增强生成)解决AI"幻觉"问题,提供知识支持;Agent作为智能助理能主动理解任务并调用工具完成工作。三者形成"黄金三角",共同推动AI向智能助手进化,未来将广泛应用于生活各场景。掌握这些概念有助于跟上AI时代步伐。
2025-12-25 14:26:34
692
原创 从提示词到Agent:大模型应用开发范式的演进之路
本文系统梳理了AI应用开发范式的五个演进阶段:提示词工程、RAG、Tool Calling、AI Workflow到Agent。Agent的核心是将任务编排控制权交还AI,形成多步推理与执行的闭环系统。Agent设计模式如ReAct和P&A,旨在解决多步推理跑偏、执行失败修正和成本控制等工程问题。理解这一演进背景有助于开发者判断AI技术发展趋势,构建可控可维护的Agent系统。
2025-12-25 14:25:02
649
原创 2025最新Transformer大模型教程,5章节详解+实战项目,让你秒懂AI核心框架
本文推荐了一个全面学习Transformer模型的五章节教程,从Seq2Seq模型基础和注意力机制入门,到深入解析Encoder和Decoder结构细节,最后通过机器翻译项目实战巩固理解。教程强调Transformer每个结构设计都有其原理,建议多次阅读以加深理解,全文阅读约需1-2小时。通过本教程,读者可以系统掌握Transformer模型的工作原理和实现方法,为学习大模型奠定基础。
2025-12-25 14:23:16
650
原创 一文读懂直接偏好优化(DPO),非常详细收藏我这一篇就够了
摘要:本文探讨了语言模型行为控制的两种方法——强化学习人类反馈(RLHF)和直接偏好优化(DPO)。RLHF通过三阶段训练实现模型对齐,但存在奖励模型准确率低、训练不稳定等问题。DPO则从理论出发,通过数学推导简化了RLHF流程,直接利用偏好数据优化模型。文章详细推导了DPO损失函数,并对比了两种方法的优劣,指出DPO具有训练更稳定、计算成本更低的特点。最后提供了DPO损失函数的代码实现。
2025-12-25 14:19:57
955
原创 AI大模型应用开发入门:7大核心技术详解+实战案例_AI大模型应用开发入门全攻略
本文系统介绍AI大模型应用开发的七大核心技术:Messages对话记忆机制、RAG检索增强生成、Tools工具调用、ReAct推理行动模式、Agent自主任务执行、Fine-tuning微调以及Prompt提示词工程。通过理解这些技术原理,开发者可构建更精准的大模型应用。文章强调大模型需结合业务需求,并提供了从入门到进阶的学习路线和资源,帮助开发者抓住AI大模型发展机遇。
2025-12-24 15:09:02
870
原创 LlamaIndex工作流详解:事件驱动架构让大模型开发更直观高效(建议收藏)
LlamaIndex采用事件驱动工作流架构,通过定义事件连接处理节点。文章介绍了四种内置事件及使用方法,展示如何用@step装饰器创建工作流步骤,并通过Context实现流式输出、状态存储和事件协调。工作流可作为服务运行,提供可视化调试页面和API接口,使复杂任务处理变得直观高效,适合大模型应用开发。
2025-12-24 15:00:34
742
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅