- 博客(910)
- 收藏
- 关注

原创 如何从传统产品经理转行成为顶尖的AI产品经理?终于有人一次性说清楚了!
我们先来看看大模型对于AI产品经理的定义:通过这个定义,我们可以发现,AI产品经理相较于传统产品经理而言,主要的差异其实就是在对AI技术的理解与应用上。大部分传统产品经理并没有硬性的要求一定要懂技术,主要工作的重点更加偏向于需求分析、业务理解、用户体验、产品设计、策略等方面,懂技术只是一个加分项。但对于AI产品经理,了解诸如大模型、机器学习、深度学习、自然语言处理、计算机视觉等AI相关的技术,则是一项必要条件,因为只有懂AI,才能利用AI满足需求,设计出AI产品的解决方案。
2024-09-19 11:07:30
1602

原创 花3000元自学AI大模型后,她薪水涨了20%
我看到了一个充满无限可能的新世界”,在面试完AI产品经理这一岗位后,陈漫在社交平台上如此描述自己的感受。AGI大模型浪潮席卷全球,技术革新越是凶猛,人们的失业焦虑便越加强烈。为了应对AI带来的冲击,有些人决定“打不过就加入”,转身投向这个风口行业。陈漫便是转行潮中的一员。如今在社交媒体搜索“转行AI”“AGI”等关键词,就会涌现大量转行经验的帖子。不少博主呼吁大家抓紧时间转行进入AI领域,“真心建议大家冲一冲AI赛道”“抓住AI红利”,此类标题反复出现。
2024-08-08 10:48:25
1729

原创 字节大厂大模型面经,看完手撕面试官,非常详细收藏我这一篇就够了
以下是一些大模型大厂的面经,供参考:谷歌(Google):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。亚马逊(Amazon):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。微软(Microsoft):面试形式:电话面试、在线编程测试、现场面试。
2024-07-31 16:35:33
1516

原创 全方位大模型教程:从基础入门到实战应用
2023年大西洋彼岸的OpenAi公司,AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,,包含🔻 压缩技术中,为什么量化要优于剪枝、蒸馏?🔻 如何搜索裁剪阈值用于裁剪outlier?🔻 包含有异常值outlier的特征如何量化?🔻 模型剪枝的技术背景🔻 模型剪枝具体方法🔻 模型剪枝前沿方法🔻 语言模型剪枝实例🔻 AI作画–以文生图🔻 扩散模型是什么🔻 扩散模型工作拓展🔻 扩散模型带来的机遇🔻 RLHF的优点和挑战🔻 RLHF如何改善大模型性能🔻 RLHF的实际应用案例。
2024-07-28 09:00:00
1990

原创 AI 大模型之美 | 更新完结
AI 大模型的美感不仅体现在其高科技的外表和复杂的内在结构上,更体现在它们带来的科技进步和社会变革中。它们是人类智慧和技术创新的结晶,不断推动着人类社会走向更加智能化和可持续的未来。如何学习AI大模型?我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
2024-06-26 11:19:45
4359
原创 AI产品经理VS传统产品经理,这就是我要转AI大模型产品经理的原因!
AI 产品经理是直接应用或间接涉及了 AI 技术,进而完成相关 AI 产品的设计、研发、推广、产品生命周期管理等工作的产品经理。具体来说,狭义 AI 产品经理直接应用了语义、语音、计算机视觉和机器学习这 4 个领域的 AI 技术,例如语义类 AI 产品经理中的知识图谱 PM、机器翻译 PM 等;广义 AI 产品经理间接涉及了这些技术或直接应用了其他还不够成熟的细分领域 AI 技术。
2025-04-19 15:22:45
418
原创 大模型微调它能干什么?什么是大模型微调?
大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。大模型微调是指在已经训练好的大规模预训练模型的基础上,针对特定的任务或数据集,对模型的参数进行少量的调整和优化。Qwen2。
2025-04-19 15:19:51
267
原创 吴恩达展望AI未来:从Agent到Agentic,下一代AI如何超越基础模型?
然而,传统的 LLM 交互方式更像是一种“非代理型工作流程 (Non-agentic workflow (zero-shot))”,用户输入指令,模型输出结果,缺乏迭代优化的空间,犹如一位才华横溢的作家,却被迫只能按照固定模板写作,无法自由挥洒其创作才能。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
2025-04-19 15:17:19
372
原创 一口气推出10余款医疗智能体,要放大招了?
智能体,这可能是今年大模型产业最热的关键词之一。一个典型的代表就是manus的一夜爆火,让整个人工智能产业意识到,将大模型能力落地形成智能体,才是应用的最佳,甚至是最短路径。在医疗领域,各家纷纷拿出大模型产品,但从目前效果看,大多大同小异,关键是尚未有场景化聚焦非常明确的案例。就在最近,联影发布了“元智”医疗大模型,并同步推出覆盖影像诊断、临床治疗、医学科教、医院管理、患者服务等多场景的10余款医疗智能体。一口气推出10余款医疗智能体,联影要放大招了?
2025-04-19 15:14:13
121
原创 OpenAI揭秘:AI Agent技术的最佳实践与前沿探索!
Agent系统是一种能够独立完成任务的系统,与传统软件不同,它可以在用户授权下高度独立地执行工作流。Agent系统的核心在于利用LLM进行工作流管理和决策,并能够根据需要动态选择工具与外部系统交互。
2025-04-19 15:12:24
225
原创 RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
个使用过LLM的人都会发现一个残酷的现实:这些看似全能的模型,有时会给出过时的信息,偶尔会“自信满满”地编造事实(即“幻觉”问题),甚至对某些专业领域的问题表现得一窍不通。面对这些局限,人工智能领域提出了三种主流解决方案——和。它们就像给LLM安装不同的“外接大脑”,但各自的运作逻辑、适用场景和成本代价却大相径庭。本文将深入探讨这三种技术的本质差异,并通过实际案例揭示:在具体业务场景中,如何像选择汽车配件一样,为你的AI引擎精准匹配最合适的“升级模块”。
2025-04-19 15:09:20
313
原创 程序员转行大模型全指南:五大热门岗位,抓住IT行业最后的风口!AI大模型学习路线,非常详细!
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2025-04-17 14:25:27
868
原创 大模型学习资源库:GitHub项目汇集所有开源中文大模型,包含微调模型、数据集及教程!
项目地址下方领取!!针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份LLM大模型资料分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以扫描下方二维码领取🆓↓↓↓。
2025-04-17 14:22:13
699
原创 大模型入门精选:八本高评分书籍,跟随大众的选择,开启你的学习之旅!
在AI技术日新月异的时代,掌握大模型开发与应用的技能已成为科研人员与工程师的必备能力。本文为读者精心挑选了8本高评分的书籍,从基础理论到实际操作,为不同层次的学习者提供了全面的学习资源。这些书籍包括对PyTorch深度学习、LLM构建、AIGC基础、大模型应用和技术演进的深入解读,助力读者在大模型时代顺利前行。八本大模型书籍PDF免费领取。
2025-04-17 14:20:05
806
原创 大模型 Agent 是不是就是各种 Prompt 的堆叠?
Agent本质是个循环,对于一个给定特性的目标 AI Agent,Agent 能够自己创建任务、完成任务、创建新任务、重新确定任务列表的优先级、完成新的顶级任务,并循环直到达到目标。Agent = LLM + Planning 计划+ Tool use 执行 + Feedback 纠正偏差其中因为输入可以涉及到图片或者视频,所以需要LLM支持多模态。
2025-04-17 14:14:43
512
原创 腾讯大模型岗面试好强啊,真的hold不住了
最近金九银十,跑了很多场面试,其中令我印象最为深刻的就是腾讯的大模型面试了,真的太强了,问的问题都好尖锐,很专业,面试过程中紧张的全身冒冷汗…真的hold不住了,回来整理了一下面经,希望对大家有帮助!
2025-04-17 13:45:13
296
原创 AI智能客服机器人部署新篇章:一键私有化Dify,轻松实现高效客户服务!
通过 Dify 平台,我们可以轻松实现 AI 智能客服机器人的私有化部署 😎。只需简单的几步操作,就能搭建出一个功能强大的智能客服系统,为用户提供更加优质的服务 🤗。还等什么,赶紧动手试试吧!
2025-04-17 13:39:53
380
原创 2025最新最全【大模型学习路线规划】零基础入门到精通_大模型 开发 学习路线
目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。
2025-04-16 15:01:17
1020
原创 LLM Agent深度探讨:RAG召回多样性优化策略
在微软提出的rewrite-retrieve-read框架中,使用大模型作为rewriter,Bing搜索作为Retriever,chatgpt作为Reader,在QA任务上,尝试使用PPO微调改写模型,Reward模型的目标是不同改写query召回后推理内容和真实答案的Exact Match和F1。但是关键词生成本身低耗时,以及在一些垂直领域其实有很好的效果。传统搜索Query的扩展,有基于用户搜索日志挖掘的相似Query,有基于相同召回文档关联的相似Query,也有基于SMT的Query改写方案。
2025-04-16 14:52:15
628
原创 使用SpringAI实现MCP服务并与Qwen集成使用
01——MCP 介绍MCP(Model Context Protocol,模型上下文协议)是一种开放协议,旨在实现 大型语言模型(LLM) 应用与外部数据源、工具和服务之间的无缝集成,类似于网络中的 HTTP 协议或邮件中的 SMTP 协议。MCP 协议通过标准化模型与外部资源的交互方式,提升 LLM 应用的功能性、灵活性和可扩展性。MCP 的架构由四个关键部分组成:1、主机(Host):主机是期望从服务器获取数据的人工智能应用,例如一个集成开发环境(IDE)、聊天机器人等。
2025-04-16 14:35:40
906
原创 一文带你了解【SFT微调】与【Unsloth】
监督微调(Supervised Fine-tuning, SFT)是一种迁移学习(Transfer Learning)技术,指的是在已经预训练好的模型(例如大语言模型中的 GPT、BERT 等)基础上,使用带有人工标注标签的监督数据,对模型进行进一步的训练,使其能更好地适应特定任务或领域。1. 核心目的任务适配:将模型的通用知识聚焦到特定目标(如生成符合人类指令的回答)。性能提升:通过优化任务相关的损失函数(如交叉熵),提升模型在目标任务的准确率。
2025-04-16 14:24:39
675
原创 字节三面:如何用FP8训练大模型?
随着DeepSeek爆火,面试中也越来越高频出现,因此训练营也更新了DeepSeek系列技术的深入拆解。包括MLA、MTP、专家负载均衡、FP8混合精度训练,Dual-Pipe等关键技术,力求做到全网最硬核的解析~本文是根据论文《FP8-LM: Training FP8 Large Language Models》,记录的一些细节和感想。为了做好精度和吞吐量的 Trade-off,框架里面常用混合精度训练大模型。
2025-04-16 14:20:51
641
原创 LLM大模型学习指南:快速入门教程与学习路径【持续更新】
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2025-04-15 15:37:58
1198
原创 Maxkb:无需编程,快速打造个性化AI助手(附详细教程)
它是飞致云开源免费的一款基于 LLM 大语言模型的开源知识库问答系统,旨在成为企业的最强大脑。开箱即用支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;无缝嵌入支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度;灵活编排内置强大的工作流引擎,支持编排 AI 工作流程,满足复杂业务场景下的需求;模型中立。
2025-04-15 15:33:25
856
原创 大模型实战教程:构建知识图谱,从技术到实战的完整指南
知识图谱,作为人工智能和语义网技术的重要组成部分,其核心在于将现实世界的对象和概念以及它们之间的多种关系以图形的方式组织起来。它不仅仅是一种数据结构,更是一种知识的表达和存储方式,能够为机器学习提供丰富、结构化的背景知识,从而提升算法的理解和推理能力。在人工智能领域,知识图谱的重要性不言而喻。它提供了一种机器可读的知识表达方式,使计算机能够更好地理解和处理复杂的人类语言和现实世界的关系。通过构建知识图谱,人工智能系统可以更有效地进行知识的整合、推理和查询,从而在众多应用领域发挥重要作用。
2025-04-15 15:31:39
564
原创 dify实现分析-rag框架的实现分析总结
概述至此,dify关于rag的实现逻辑就基本上分析完了,本文对dify的rag实现进行总结。另外,由于之前的文章顺序比较随意,所以,这里会把之前的文案顺序进行一个梳理,并给出阅读的顺序目录。后面会根据需要对这部分内容进行增补。参考文章:《dify实现原理分析-上传文件创建知识库总体流程》
2025-04-15 15:28:07
967
原创 AI智能体演示:结合LangChain与模型上下文协议(MCP)
是由 Anthropic 推出的开源协议,旨在为大型语言模型(LLM)提供安全、可解释、可扩展的外部数据与工具集成方案。
2025-04-15 15:26:19
687
原创 部署 RAG Agents 的 10 个经验教训
本文内容来自于 Douwe Kiela 近期的一次演讲,他是 RAG 论文(Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks)作者之一。尽管 AI (特别是GenAI) 被认为能为全球经济带来数万亿美元的价值 (例如麦肯锡估计为 4.4 万亿美元),但许多企业在实际应用中难以看到明确的投资回报率 (ROI),导致普遍存在挫败感。企业领导者(尤其是 CIO 和 AI 负责人)面临巨大压力,需要证明 AI 投资的价值。
2025-04-15 15:22:47
1006
原创 新手转行大模型指南:这些坑你就不要踩了【2025转行大模型】
在这个数据驱动的时代,大模型作为人工智能领域的核心技术,正引领着一场深刻的行业变革。对于众多有志于投身AI领域的新人来说,转行至大模型开发和应用无疑是一个充满挑战与机遇的选择。以下是为大模型新人量身定制的转行指南,旨在帮助你了解大模型的不同方向、能力要求、常见误区,以及如何顺利踏入这一领域的最佳路径。
2025-04-14 14:28:53
1093
原创 什么是 Langchain? 看完你就搞懂了!
想象一下,如果你能让聊天机器人不仅仅回答通用问题,还能从你自己的数据库或文件中提取信息,并根据这些信息执行具体操作,比如发邮件,那会是什么情况?Langchain 正是为了实现这一目标而诞生的。Langchain 是一个开源框架,它允许开发人员将像 GPT-4 这样的大型语言模型与外部的计算和数据源结合起来。目前,它提供了 Python 和 JavaScript(确切地说是 TypeScript)的软件包。上图展示了Langchain的工作原理,这是一个用于提升大型语言模型(LLMs)功能的框架。
2025-04-14 14:13:10
931
原创 AI大模型训练参数估算全攻略:参数量计算,一篇文章搞定!
随着大模型时代的到来,模型参数量、训练数据量、计算量等各方面急剧增长。参数规模方面,在过去的几年里,语言模型的参数规模从数亿增长到数千亿,甚至达到万亿级别。例如OpenAI的GPT-3拥有175B参数,而GPT MoE参数规模到达了1.8T;数据量方面,训练一个大模型通常需要达到T级别tokens;另外,由于参数规模和数据量庞大,随之带来的是巨大的计算量。
2025-04-14 14:11:42
621
原创 MCP深度解析:原理与实践,一篇文章彻底讲透!
MCP (Model Context Protocol) 代表了 AI 与外部工具和数据交互的标准建立。通过本文,我们可以了解到MCP的本质、价值、使用与开发。MCP是什么。
2025-04-14 14:07:12
648
原创 Ollama+kunlab:丝滑运行Gemma3 27b,体验前所未有的流畅!
Hello,大家好啊!好久没更新啦,今天来吹一波Gemma3系列。一个月前,Google 的 Deepmind 团队开源了 Gemma 家族的第三代模型 ——Gemma3 系列。从原本的文本模型扩展到了多模态模型,支持了图像转文本。不过开源的时候,它对硬件的支持不太给力。就拿 24G 显存的硬件来说,本地跑 27bQ4 量化模型,速度慢得让人着急,更别提图像转文本功能了,基本没法正常用。
2025-04-14 14:02:36
703
原创 2025AI大模型最新学习路线!自学AI大模型,顺序不要搞反了!
通过以上七个阶段的学习,您将能够建立起对大规模预训练模型的深刻理解,并掌握其在实际应用中的技巧。记得在学习过程中保持好奇心和探索精神,积极尝试新技术并参与社区讨论。希望这份学习路线图能帮助您成功踏上大规模模型的学习之旅!如果您对某个特定阶段或主题有更详细的问题,欢迎随时提问!
2025-04-13 18:21:28
1130
原创 一网打尽!10种最流行AI大模型深度解析,一篇掌握精髓!
在人工智能领域,随着技术的飞速发展,各种大模型如雨后春笋般涌现,为各行各业带来了前所未有的变革。本文将带您深入了解当前最流行的10种AI大模型,并解析它们在不同领域的应用和优势。讯飞星火大模型由科大讯飞精心打造,具备七大核心能力:文本生成、语言理解、知识问答、逻辑推理、数学能力、代码能力和多模态能力。在知识学习与内容创作方面,它可以进行要素抽取、问题生成,帮助用户生成更丰富、更有用的智能内容。讯飞星火还具备强大的代码生成能力,可以智能生成代码并定位错误,支持多模态内容处理,如图片描述、音频和视频生成。
2025-04-13 18:16:42
773
原创 电脑新手也能轻松上手!Ollama部署大模型并安装Chatbox教程大公开!
某些场景下可能希望构建一个完全本地离线可用的大模型,方法很多,模型也很多,比如 qwen、qwen2、llama3等,最简单快捷的首推使用 ollama 部署,模型选用 qwen 或 qwen2,针对中文任务效果更好。
2025-04-13 18:14:26
639
原创 中小企业硬核接入大模型:用QLoRA微调Google大模型Gemma-3微调实战
微调的本质是利用了迁移学习技术,即从预训练模型开始,通过特定数据集进一步训练以提高特定领域的性能。全微调(Full- Fine-tuning):重新训练整个模型,更新所有参数权重,效果显著但资源密集。参数高效微调(PEFT):仅更新少量参数(如 ),减少计算需求,适合资源有限的企业。常见技术有:LoRA(Low-Rank Adaptation)、QLoRA、P-tuning(前缀调优)、Adapter等。蒸馏:训练较小模型模仿较大模型的行为,降低数据需求。指令微调。
2025-04-13 18:11:49
927
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人