自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2268)
  • 收藏
  • 关注

原创 大模型工程师完全指南:从概念到实践的全方位学习路径,AI大模型应用开发学习路线

本文从工程师视角系统介绍大语言模型(LLM)的核心概念、应用场景及工作原理。文章详细解析了LLM在医疗、教育、软件开发等领域的应用价值,对比了工程思维与算法思维的差异,并阐述了LLM基于海量数据训练的概率生成特性。通过实际案例展示了AI辅助编程实现微信小程序的完整流程,帮助读者理解LLM从理论到实践的转化过程。最后简要概述了从零构建LLM的关键步骤,为工程师提供系统性学习路径。

2025-12-16 14:59:25 1300

原创 如何从传统产品经理转行成为顶尖的AI产品经理?终于有人一次性说清楚了!

我们先来看看大模型对于AI产品经理的定义:通过这个定义,我们可以发现,AI产品经理相较于传统产品经理而言,主要的差异其实就是在对AI技术的理解与应用上。大部分传统产品经理并没有硬性的要求一定要懂技术,主要工作的重点更加偏向于需求分析、业务理解、用户体验、产品设计、策略等方面,懂技术只是一个加分项。但对于AI产品经理,了解诸如大模型、机器学习、深度学习、自然语言处理、计算机视觉等AI相关的技术,则是一项必要条件,因为只有懂AI,才能利用AI满足需求,设计出AI产品的解决方案。

2024-09-19 11:07:30 1766 1

原创 花3000元自学AI大模型后,她薪水涨了20%

我看到了一个充满无限可能的新世界”,在面试完AI产品经理这一岗位后,陈漫在社交平台上如此描述自己的感受。AGI大模型浪潮席卷全球,技术革新越是凶猛,人们的失业焦虑便越加强烈。为了应对AI带来的冲击,有些人决定“打不过就加入”,转身投向这个风口行业。陈漫便是转行潮中的一员。如今在社交媒体搜索“转行AI”“AGI”等关键词,就会涌现大量转行经验的帖子。不少博主呼吁大家抓紧时间转行进入AI领域,“真心建议大家冲一冲AI赛道”“抓住AI红利”,此类标题反复出现。

2024-08-08 10:48:25 1863 1

原创 字节大厂大模型面经,看完手撕面试官,非常详细收藏我这一篇就够了

以下是一些大模型大厂的面经,供参考:谷歌(Google):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。亚马逊(Amazon):面试形式:电话面试、在线编程测试、现场面试。面试内容:数据结构和算法、机器学习、深度学习、NLP、项目经验。面试难度:较高,注重基础知识和实际应用能力。微软(Microsoft):面试形式:电话面试、在线编程测试、现场面试。

2024-07-31 16:35:33 1708 1

原创 全方位大模型教程:从基础入门到实战应用

2023年大西洋彼岸的OpenAi公司,AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,,包含🔻 压缩技术中,为什么量化要优于剪枝、蒸馏?🔻 如何搜索裁剪阈值用于裁剪outlier?🔻 包含有异常值outlier的特征如何量化?🔻 模型剪枝的技术背景🔻 模型剪枝具体方法🔻 模型剪枝前沿方法🔻 语言模型剪枝实例🔻 AI作画–以文生图🔻 扩散模型是什么🔻 扩散模型工作拓展🔻 扩散模型带来的机遇🔻 RLHF的优点和挑战🔻 RLHF如何改善大模型性能🔻 RLHF的实际应用案例。

2024-07-28 09:00:00 2110 1

原创 30+程序员2个月零基础转行大模型,月薪2w+!亲身经验助你突破职业瓶颈,希望能给北上广深的你一些启发

30+程序员2个月成功转行大模型领域经验分享 一位32岁北漂程序员分享了自己从传统开发转行大模型应用工程师的经历。面对十年程序员的职业倦怠和生活失衡,他通过系统学习大模型知识,仅用2个月就获得月薪2w+的offer。文章详细介绍了大模型行业的机遇与挑战,包括算法工程师与应用工程师的区别,并提供了完整的学习路径:从数学基础到机器学习理论,再到TensorFlow/PyTorch等工具实践。作者特别强调实践项目的重要性,建议通过开源贡献和个人作品集积累经验。文末还提供了大模型学习资源包,为面临类似职业困境的技术

2026-01-31 11:39:25 365

原创 AI Agent揭秘:给大模型装上“手脚“,让ChatGPT真正帮你干活!值得收藏!

AI Agent:让大模型从"思考者"变"行动者" AI Agent通过为大模型配备工具集,使其具备与外界交互的能力,实现任务自动化。核心运行模式包括: ReAct模式(思考-行动-观察-再思考循环) Plan-and-Execute模式(先规划后执行,动态调整) 典型应用场景: 编程类Agent:自动完成代码编写、测试和部署 研究类Agent:自主搜集信息并生成结构化报告 AI Agent通过系统提示词指导大模型按特定流程工作,结合工具函数完成实际任务,代表AI技术

2026-01-31 11:37:40 136

原创 2025编程Agent大爆发:构建Agent OS的五大核心系统

编程Agent操作系统化:从DOS时代迈向现代架构 本文以操作系统演化视角分析AI Agent的技术发展路径,提出构建"Agent OS"的五大核心子系统: 内存管理(Context Engineering):类比虚拟内存机制,需解决上下文窗口资源分配与缓存优化问题 数据库:承担长期记忆存储、状态持久化等多元角色,PostgreSQL成为最适配方案 进程管理:实现任务调度与资源隔离的关键层 I/O管理:规范工具调用接口 安全与可观测性:建立系统级防护 文章指出当前Agent生态正重演从D

2026-01-31 11:36:23 301

原创 Extended Thinking揭秘:大模型长上下文推理的架构演进与实战指南

摘要: Extended Thinking是一种创新架构,将无状态的LLM转变为有状态的长生命周期Actor模型,通过服务端缓存推理状态解决客户端断连问题。其核心在于"隐形Token税"和双缓冲机制,实现Client-Side与Server-Side计算成本的灵活转移,同时保证推理链路的原子性。该架构通过状态机管理、Token消费模型重构和缓冲区优化,平衡了容错性、延迟与成本,支持高并发长上下文推理,为大模型应用提供了高性能解决方案。关键设计包括分离式计费维度、超时策略优化及利用隐藏推理

2026-01-31 11:35:25 143

原创 Clawdbot深度解析:如何为AI打造本地持久记忆系统

摘要:Clawdbot是一款创新的开源AI助手,通过本地Markdown文件实现持久化记忆存储,解决了云端AI"金鱼记忆"问题。其核心创新包括:双层记忆架构(流水账日志+知识库)、混合检索策略(70%向量搜索+30%BM25关键字)、智能记忆维护机制(压缩/修剪/缓存管理)以及多智能体隔离功能。用户完全掌控数据隐私,无需依赖云端即可打造"越用越懂你"的本地AI伙伴,为个人AI助理的发展提供了新范式。(148字)

2026-01-31 11:34:29 133

原创 AI大模型应用开发全攻略:从入门到精通,非常详细收藏我这一篇就够了

本文系统介绍AI大模型应用开发核心技术,包括Messages对话记忆机制、RAG检索增强生成、Tools工具调用、ReAct推理行动框架、Agent自主任务执行等关键技术。通过实际案例解析大模型交互原理、知识库构建和微调方法,揭示大模型通过上下文传递实现"记忆"、借助外部工具扩展能力等核心机制。文章提供从基础概念到企业级应用的全流程指南,帮助开发者掌握提示词工程、知识检索优化等实践技巧,为AI大模型应用开发提供清晰学习路径和技术全景图。

2026-01-30 20:24:32 512

原创 万字长文详解具身智能:从基础到LLMs/WMs赋能,小白也能轻松掌握大模型应用

本文系统探讨具身智能的基础与前沿进展,聚焦大语言模型/多模态大模型与世界模型对具身智能的赋能作用。LLMs/MLLMs通过语义推理和任务分解强化具身认知,WMs通过构建外部世界的内部表征和未来预测支撑物理合规交互。二者融合形成的MLLM-WM联合架构成为突破复杂物理世界任务的关键方向,已在服务机器人、救援无人机等领域展现应用价值,未来将向自主具身AI、群体智能等方向发展。

2026-01-30 20:23:15 325

原创 政务大模型应用全攻略:政策解析、技术路线与实践案例,助力开发者入门

我国政务领域人工智能大模型应用加速推进,《政务领域人工智能大模型部署应用指引》作为首个专项政策文件出台,从技术创新、场景驱动、运维模式和治理机制四方面规范引导应用。目前大模型已在政务服务、城市治理等场景广泛应用,有效提升服务效率。未来将坚持统筹部署、示范引领和安全底线,推动"人工智能+政务"高质量发展。文章指出,大模型技术正重塑政府治理模式,2024年我国AI产业规模超9000亿元,政务大模型已分流近1/3人工服务。政策强调技术辅助定位和分类分级治理,确保应用稳妥有序,助力政府治理现代化

2026-01-30 20:22:01 426

原创 大模型实战案例:运营商如何从“管道“到“智能服务商“的华丽转身

**摘要:**中国运营商正借助5G+AI技术,从传统管道提供商向智能服务商转型。通过黑龙江数字政府、辽宁12345热线、四川方言保护等20多个场景案例,展示了AI大模型在政务和社会服务领域的应用成效,显著提升了效率并降低了成本。同时,AI落地仍面临数据融合、高昂训练成本和长尾需求不足等挑战,需兼顾技术突破与行业深耕。这场由大模型驱动的产业革命,正在重塑社会治理范式,未来发展潜力巨大。

2026-01-30 20:21:02 407

原创 UltraRAG 3.0:零代码构建RAG系统,从入门到实战指南

清华大学THUNLP实验室联合多机构推出全球首个基于MCP架构的轻量级RAG开发框架UltraRAG 3.0。该框架通过模块化设计将RAG组件标准化封装为独立服务,采用YAML配置驱动实现低代码开发,并提供可视化IDE支持一站式开发体验。创新性地集成了自动适配知识库、多模态处理、标准化评估等核心技术,显著降低了复杂RAG系统的开发门槛。实验显示,其动态记忆管理策略可使问答性能提升3%-13.9%,DDR优化策略在小模型上提升超过7%。框架支持从学术研究到工业应用的多种场景,目前已开源并获社区广泛关注。

2026-01-30 20:20:03 398

原创 2026全网最详细的AI大模型学习路线_AI大模型学习路线,非常详细收藏我这一篇就够了

随着AI大模型技术快速发展,掌握其应用开发变得至关重要。为此,团队历时6个月打造了业界首份系统化AI大模型学习路线。该路线从基础开发知识入手,涵盖工具准备、环境搭建等核心内容,帮助开发者快速入门。目前完整学习资料已免费发布在CSDN平台,可通过官方认证二维码领取。这份路线图填补了行业空白,为AI开发者提供了明确的学习指引和实践方向。

2026-01-29 15:13:26 1213

原创 RAG开发者必看:索引≠检索,4种智能索引方法让你的大模型更聪明

文章探讨了RAG系统中索引与检索的区别,指出"建立索引"不等于"检索同一份文档"。文章提出了四种智能索引方法:分块索引、子块索引、查询索引和摘要索引,分别适用于不同场景。作者强调,索引策略应根据业务需求选择,而非越复杂越好。从基础分块开始,逐步应用智能索引技术,可以有效提升RAG系统的检索效果和生成质量,实现从"能跑"到"好用"的转变。

2026-01-29 15:11:30 583

原创 AI大模型时代的职业新地图:九大高薪岗位全解析与转型指南

AI时代催生九大高薪岗位,人才缺口达3600万 随着AI技术发展,九大新兴岗位应运而生,包括首席AI官、AI基础设施工程师、AI训练工程师等。预计到2030年,全球ICT岗位需求将激增3600万,其中AI与安全领域人才缺口最为突出。这些岗位薪资极具竞争力,资深人才年薪可达50-150万元。 现有数据/IT从业者可通过以下路径转型:夯实AI理论基础,掌握Python、Transformer架构等核心技术;选择专业方向,积累实战经验;持续学习以适应快速迭代的技术环境。未来工作将呈现人机协作模式,具备技术深度、业

2026-01-29 14:57:54 516

原创 多模态RAG实现之道:直接vs间接表示法详解,小白也能轻松掌握

多模态RAG通过两种方式实现检索:间接表示法(用文本描述其他模态)和直接表示法(映射到统一向量空间)。多模态融合包括早、中、晚期融合,跨模态对齐则分为显式和隐式对齐。这些技术使不同模态数据能够在统一维度下进行语义检索,是未来AI发展的重要方向。

2026-01-29 14:56:28 670

原创 大模型微调显卡选择指南:普通人也能低成本用上H卡,告别选卡焦虑!

本文针对大模型微调显卡选择难题,提出三条铁律:显存优先于算力、考虑总体成本、云端算力更具优势。推荐LLaMA-Factory Online的"灵动超省"模式,以一半价格提供H100级算力,支持按需使用,避免资源浪费。该方案特别适合预算有限的学生、个人开发者及初创团队,是解决"选卡焦虑"的高性价比选择。

2026-01-29 14:55:29 486

原创 30岁转行AI,是否可行?大模型学习全攻略:从零基础到AI专家的逆袭之路

文章讲述了一位非技术背景人士如何成功转型AI领域。作者分享了三点核心经验:AI领域普通人在边缘地带也有机会;过去的技能是进入新领域的宝贵财富;转型需先上车再找座、在工作中融合、用作品说话。同时提供了大模型AI的完整学习路径,包括提示词工程、RAG系统等内容,帮助读者从零基础成长为AI专家。

2026-01-27 14:26:06 1206

原创 多模态大模型评测基准全景解析:程序员必备收藏指南

多模态大模型评测体系全景扫描:19个基准揭示能力短板与发展方向 本文系统梳理了当前主流的19个多模态大模型评测基准,涵盖文本识别、表格解析、图表理解、视频理解等多个领域。这些基准从不同维度评估模型能力边界,结果显示即使是GPT-4V等顶尖模型在复杂场景下仍存在明显不足。评测体系持续进化,正从基础感知能力向指令遵循、语义保真度等高级认知维度延伸,为多模态AI的行业落地提供了标准化评估框架。特别值得注意的是,在OCR、复杂文本推理等专业场景中,主流模型表现普遍低于50分(满分100),凸显了当前技术的局限性。这

2026-01-27 14:24:32 726

原创 多模态大语言模型下游微调全攻略:3大策略详解与实战指南

本文系统综述多模态大语言模型(MLLMs)的下游微调技术,提出任务专家化与开放世界稳定两大核心挑战,并分析选择性微调、附加式微调和重新参数化微调三大策略的优劣。研究构建标准化评测框架,在医学、遥感等多领域测试表明:全层微调易过拟合,低秩适配保留知识但效果受限,选择性微调在平衡专门化与泛化方面最优。未来研究将聚焦专门化与泛化平衡、计算优化和跨模态适配等方向。

2026-01-27 14:23:07 862

原创 一文读懂多模态大模型(MM-LLMs)的核心架构与组件

多模态大模型(MM-LLMs)是当前AI研究热点,能够处理文本、图像、音频等多种数据。其核心架构包含五个关键组件:模态编码器转换输入数据为特征,输入投影器统一不同模态到共享空间,语言模型进行核心处理,输出投影器转换输出结果,模态生成器生成最终内容。这种架构实现了跨模态理解与生成能力,在自动驾驶、智能问答等领域具有广泛应用前景。通过整合多种模态数据,MM-LLMs展现出强大的信息处理能力,推动人机交互向更自然、更智能的方向发展。

2026-01-27 14:22:09 807

原创 飞书文档×AI Agent:打造你的动态知识库,收藏这份大模型学习指南

文章介绍了作者如何通过飞书云文档解决知识管理问题,并开源feishu-docx工具,将飞书文档转换为Markdown格式,使AI Agent能够直接查询和操作飞书内容。这一方案解决了传统文档工具"死档案馆"的问题,实现了知识的动态运营与持续演进。此外,文章还分享了AI大模型从入门到精通的全套学习资源包,包含视频教程、学习路线图、电子书籍和技术文档等,旨在帮助读者掌握AI技术并实现职业转型。

2026-01-27 14:21:01 563

原创 大模型开发工程师年薪90万不是梦!零基础入门到高薪就业的完整攻略(附资料包)

大模型应用开发工程师成为市场新宠,需求激增200%,应届年薪高达90万。该岗位聚焦API对接、Prompt设计、模型微调等工程落地,技术门槛低于底层模型训练。从业者需掌握Python、Transformer架构、Prompt工程等核心技能,学习路径可分为4阶段逐步进阶。当前行业资源丰富,入局窗口期明显,职业发展路径多元,是AI时代最具潜力的技术岗位之一。完整学习方案包含视频教程、技术文档、面试指南等104G资源包,助力开发者快速入行。

2026-01-26 17:33:41 1021

原创 从入门到精通:RAG生产级实战指南 | 大模型应用必备收藏

本文系统介绍了RAG技术从概念到落地的全流程解决方案。首先分析RAG的核心价值在于弥补大模型的三大缺陷(幻觉、知识滞后和私有数据隔离),并对比RAG与微调、提示工程的适用场景。随后详细解析知识库构建的关键环节,包括文档解析、文本切分、Embedding模型选型和向量库优化。在检索增强部分,提出Query改写、混合检索、多级检索漏斗等提升召回率的实用技巧。生成环节则强调Prompt工程、推理链选型和流式输出等优化策略。最后给出评估监控体系设计、知识库动态更新方案及企业级部署建议,强调工程细节对RAG成功的关键

2026-01-26 17:32:22 839

原创 Ollama大模型开发实战:从基础到高级功能的全面指南

本文系统讲解Ollama大模型平台开发技巧,涵盖流式处理、CLI命令、结构化输出、向量嵌入和Agent循环五大核心功能。重点解析三种流式模式(聊天、思考、工具调用)的实现方法,提供Pydantic定义JSON结构的实践示例,并详细说明Agent多轮工具调用的开发流程。文章包含丰富代码示例,如流式响应处理、思考模式控制、图像描述Schema定义等,帮助开发者快速掌握从基础到高级的Ollama应用开发技能。适合需要构建AI应用的程序员参考学习。

2026-01-26 17:31:07 603

原创 MCP:大模型界的Type-C标准,让你的工具一次编写到处运行(深度好文,值得收藏)

MCP(模型上下文协议)作为大模型领域的"Type-C"标准,解决了不同模型间工具不通用的问题。该协议通过标准化工具接口格式,使大模型能够统一调用各类功能(如绘画、搜索等),无需针对不同模型单独适配。MCP由客户端和服务端组成,其标准化设计有望构建类似Windows和iOS的大模型生态系统,使大模型真正成为承载各类应用的基座平台。目前主流大模型均已支持MCP协议,开发者只需按照协议开发工具即可实现跨模型通用。

2026-01-26 17:29:54 869

原创 大模型术语全解析:从LLM到Agent,小白必学指南

文章系统介绍了大模型领域的核心术语,包括LLM(参数规模≥1B的语言模型)、MCP(连接外部数据的标准化协议)、Agent(结合LLM和工具实现任务的智能体)、RAG(减少模型幻觉的检索增强生成)、LangChain(开发框架)、vLLM(通过KV Cache和连续批处理提高效率)等关键技术概念,帮助读者建立大模型知识体系。

2026-01-26 17:28:58 774

原创 AI大模型面试真题与学习笔记,助你快速掌握核心技术栈【AI大模型面经】百度AI产品经理offer

本文整理了AI/产品经理岗位的三轮面试高频问题,涵盖职业转型动机、AI行业认知、产品思维考察及技术细节探讨。业务一面侧重专业背景与AI应用的结合,二面聚焦实习经历与领域适配性,三面深入职业规划与业务理解。文末提供价值104G的AI大模型学习大礼包,包含视频教程、技术文档和面试题库,由行业专家联合整理,适合零基础到进阶的学习需求。资料可通过扫描二维码免费获取,助力求职者系统掌握大模型技术栈,实现职业转型与技能提升。

2026-01-25 18:27:34 847

原创 程序员必备:100行代码实现极简LLM框架,告别依赖地狱,轻松构建智能体应用

PocketFlow是一款革命性的极简LLM框架,仅用100行代码实现主流框架核心功能。它将LLM应用建模为"节点+流+共享存储"的有向图结构,支持智能体、工作流、RAG等所有AI设计模式。框架零依赖、无厂商锁定,解决了传统框架臃肿复杂、依赖冲突等问题。开发者可以像管理厨房工作流程一样直观地构建复杂AI应用,无需处理过度抽象带来的维护负担。这种"智能体化编程"范式通过极简设计实现了最大灵活性,代表了大模型开发的未来方向。

2026-01-25 18:26:42 1053

原创 腾讯混元大模型本地安装与Elasticsearch连接实战指南

本文详细介绍了腾讯混元大模型(Hunyuan-4B)的本地部署与Elasticsearch集成方案。通过Ollama工具安装GGUF量化版本,完成下载模型、创建Modelfile配置参数、注册模型等步骤,成功在本地运行该中文助手模型。随后展示了如何配置OpenAI兼容服务,将混元模型连接到Elasticsearch,实现文档上传和交互测试。文章提供了完整的命令流程和参数设置,帮助开发者快速搭建这一AI应用环境。腾讯混元大模型在内容创作、代码生成等方面表现优异,本文为其本地化应用提供了实用指南。

2026-01-25 18:25:45 793

原创 大模型开发学习路径:从基础知识到工程实战的完整指南

大模型12个月学习路线:从基础到实战 摘要: 本文系统规划了大模型(LLM)开发的12个月学习路径,分为4个阶段: 基础阶段(0-2月):掌握Python、数学和深度学习基础,理解Transformer机制 框架阶段(3-5月):学习Prompt工程、LangChain、RAG等核心框架 微调阶段(6-9月):实践LoRA微调、模型部署等工程化技术 进阶阶段(9-12月):探索多模态模型与云端部署 每个阶段包含明确的学习重点、实践任务和推荐资源,通过循序渐进的项目实践帮助学习者掌握大模型开发全流程,最终具备

2026-01-25 18:24:54 743

原创 大模型开发技术详解:从数据准备到模型部署,小白也能看懂的完整指南

本文系统梳理了大模型开发全流程,涵盖数据收集清洗、模型架构设计、预训练、性能优化、推理机制等关键环节。重点解析了数据去重(MinHash+LSH技术)、Transformer架构原理、Scaling Law性能上限等核心技术,并针对工程实践中的内存处理、训练稳定性等挑战提出解决方案。文章为开发者提供了从零构建大模型的完整技术路径,包括数据处理、模型训练、评估微调及部署优化的实用指南,帮助理解大模型开发的全景图景和关键技术要点。

2026-01-25 18:23:33 1009

原创 产品经理转型AI大模型全攻略:从入门到精通_从互联网到人工智能,产品经理转型指南

本文为传统产品经理转型人工智能产品经理(AIPM)的实用指南。文章首先分析了AI市场的广阔前景和AIPM的就业优势,指出当前市场对具备1年以上经验的AIPM需求旺盛但供给不足。随后详细阐述了AIPM的核心能力模型(AI+PM+X),重点介绍了服务层AIPM所需技能,并提供了从零开始的学习路径,包括大模型学习的六个阶段及配套资源(书籍、项目、教程等)。文章特别强调应用层服务层是最适合传统PM转型的方向,为有意进入AI领域的产品经理提供了系统化的学习框架和实操建议。

2026-01-24 15:10:01 851

原创 10B击败200B!阶跃星辰视觉语言模型开源,大模型技术学习指南

阶跃星辰发布Step3-VL-10B视觉语言模型,仅10B参数即实现同规模SOTA表现。该模型通过三大创新设计:多模态联合预训练、规模化强化学习(1,400+次迭代)和并行协同推理机制,在STEM推理、数学竞赛、空间理解等6大核心维度表现优异。评测显示其不仅能处理传统图文任务,还可实现GUI操作、文档解析等高阶功能,使复杂多模态推理可部署至移动设备。该突破证明模型智能不完全依赖参数规模,为AI发展提供新思路。文章还分析了视觉语言模型的评测体系,涵盖识别、OCR、代码等实用维度,并展望了2026年AI技术发展

2026-01-24 15:08:45 662

原创 LangGraph入门指南:构建大模型应用的核心组件与实战技巧

本文系统讲解了LangGraph框架的核心组件与构建方法。该框架通过状态(State)、节点(Nodes)和边(Edges)实现有状态应用开发,其中State定义全局数据结构,Nodes作为计算单元处理状态,Edges控制节点间的数据流向。文章详细介绍了StateGraph类的使用流程、状态定义与reducer函数机制、节点实现方式以及普通边与条件边的应用场景,为开发者构建大模型应用提供了全面的技术指导。

2026-01-24 15:04:35 574

原创 智能体异常处理与恢复:从实验室到生产环境的通关秘籍

智能体的异常处理与恢复机制是实现生产级应用的关键。该体系通过"预防-检测-处理-恢复-优化"全流程设计,构建智能体的"免疫系统"。核心包括三大环节:精准检测故障信号、分级处理策略(重试/备用方案/降级)以及恢复优化闭环。与MCP协议、目标监控协同,确保智能体在API报错、服务中断等场景下快速恢复,并通过LLM反思机制持续优化。这种弹性设计使智能体从实验室走向真实商业环境,成为可靠的价值创造者。

2026-01-24 15:03:39 736

原创 保姆级教程:本地微调Gemma 3 270M模型,从零开始训练你的AI棋手(建议收藏)

本文介绍了如何在本地高效微调谷歌Gemma 3 270M模型(仅需0.5GB内存),使其具备智能下棋能力。通过Unsloth工具进行LoRA微调,结合HuggingFace transformers库和ChessInstruct数据集,训练模型预测缺失棋步。结果显示微调后模型能准确预测棋步,而非随机生成,为轻量级本地AI应用提供了实践案例。文章还包含详细的技术实现步骤和效果对比图。

2026-01-24 15:00:38 663

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除