Awesome-Efficient-LLM: 大型语言模型高效化技术的最新进展
近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了突破性进展,展现出强大的能力。然而,这些模型通常规模庞大,计算和存储开销巨大,限制了其在实际应用中的部署。为了解决这一问题,研究人员们一直在探索如何提高LLMs的效率,使其能够在有限的计算资源下保持良好的性能。
GitHub上的Awesome-Efficient-LLM项目正是为了追踪和汇总这一领域的最新进展而创建的。该项目由研究者horseee发起和维护,旨在为从事LLM高效化研究的学者和工程师提供一个全面的资源库。
项目概览
Awesome-Efficient-LLM项目主要包含以下几个方面的内容:
- 网络剪枝与稀疏化
- 知识蒸馏
- 模型量化
- 推理加速
- 高效的混合专家模型(MoE)
- 高效的LLM架构设计
- KV缓存压缩
- 文本压缩
- 低秩分解
- 硬件/系统优化
- 模型微调
- 相关综述
对于每个方向,项目都收集了最新的研究论文,并提供了论文链接、代码实现(如果有的话)以及简要介绍。此外,项目还为一些特别重要或有影响力的工作标注了"推荐论文"标签,方便读者快速找到该领域的关键文献。
最新研究进展
让我们来看看Awesome-Efficient-LLM项目中收录的一