Awesome-Efficient-LLM: 大型语言模型高效化技术的最新进展

Awesome-Efficient-LLM: 大型语言模型高效化技术的最新进展

近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了突破性进展,展现出强大的能力。然而,这些模型通常规模庞大,计算和存储开销巨大,限制了其在实际应用中的部署。为了解决这一问题,研究人员们一直在探索如何提高LLMs的效率,使其能够在有限的计算资源下保持良好的性能。

GitHub上的Awesome-Efficient-LLM项目正是为了追踪和汇总这一领域的最新进展而创建的。该项目由研究者horseee发起和维护,旨在为从事LLM高效化研究的学者和工程师提供一个全面的资源库。

项目概览

Awesome-Efficient-LLM项目主要包含以下几个方面的内容:

  1. 网络剪枝与稀疏化
  2. 知识蒸馏
  3. 模型量化
  4. 推理加速
  5. 高效的混合专家模型(MoE)
  6. 高效的LLM架构设计
  7. KV缓存压缩
  8. 文本压缩
  9. 低秩分解
  10. 硬件/系统优化
  11. 模型微调
  12. 相关综述

对于每个方向,项目都收集了最新的研究论文,并提供了论文链接、代码实现(如果有的话)以及简要介绍。此外,项目还为一些特别重要或有影响力的工作标注了"推荐论文"标签,方便读者快速找到该领域的关键文献。

最新研究进展

让我们来看看Awesome-Efficient-LLM项目中收录的一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值