DP23 Bellman–Ford Algorithm @geeksforgeeks

Given a graph and a source vertex src in graph, find shortest paths from src to all vertices in the given graph. The graph may contain negative weight edges.
We have discussed Dijkstra’s algorithm for this problem. Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VLogV) (with the use of Fibonacci heap). Dijkstra doesn’t work for Graphs with negative weight edges, Bellman-Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra and suites well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more than Dijkstra.

Algorithm
Following are the detailed steps.

Input: Graph and a source vertex src
Output:
 Shortest distance to all vertices from src. If there is a negative weight cycle, then shortest distances are not calculated, negative weight cycle is reported.

1) This step initializes distances from source to all vertices as infinite and distance to source itself as 0. Create an array dist[] of size |V| with all values as infinite except dist[src] where src is source vertex.

2) This step calculates shortest distances. Do following |V|-1 times where |V| is the number of vertices in given graph.
…..a) Do following for each edge u-v
………………If dist[v] > dist[u] + weight of edge uv, then update dist[v]
………………….dist[v] = dist[u] + weight of edge uv

3) This step reports if there is a negative weight cycle in graph. Do following for each edge u-v
……If dist[v] > dist[u] + weight of edge uv, then “Graph contains negative weight cycle”
The idea of step 3 is, step 2 guarantees shortest distances if graph doesn’t contain negative weight cycle. If we iterate through all edges one more time and get a shorter path for any vertex, then there is a negative weight cycle

How does this work? Like other Dynamic Programming Problems, the algorithm calculate shortest paths in bottom-up manner. It first calculates the shortest distances for the shortest paths which have at-most one edge in the path. Then, it calculates shortest paths with at-nost 2 edges, and so on. After the ith iteration of outer loop, the shortest paths with at most i edges are calculated. There can be maximum |V| – 1 edges in any simple path, that is why the outer loop runs |v| – 1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated shortest paths with at most i edges, then an iteration over all edges guarantees to give shortest path with at-most (i+1) edges (Proof is simple, you can refer this or MIT Video Lecture)

Example
Let us understand the algorithm with following example graph. The images are taken from this source.

Let the given source vertex be 0. Initialize all distances as infinite, except the distance to source itself. Total number of vertices in the graph is 5, so all edges must be processed 4 times.

Example Graph

Let all edges are processed in following order: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D). We get following distances when all edges are processed first time. The first row in shows initial distances. The second row shows distances when edges (B,E), (D,B), (B,D) and (A,B) are processed. The third row shows distances when (A,C) is processed. The fourth row shows when (D,C), (B,C) and (E,D) are processed.

The first iteration guarantees to give all shortest paths which are at most 1 edge long. We get following distances when all edges are processed second time (The last row shows final values).

The second iteration guarantees to give all shortest paths which are at most 2 edges long. The algorithm processes all edges 2 more times. The distances are minimized after the second iteration, so third and fourth iterations don’t update the distances.




package DP;

public class BellmanFordAlgorithm {

	public static void main(String[] args) {
		int V = 5;	// Number of vertices in graph
		int E = 8;	// Number of edges in graph
		Graph graph = createGraph(V, E);
		
		graph.edge[0].src = 0;
		graph.edge[0].dest = 1;
		graph.edge[0].weight = -1;
		
		graph.edge[1].src = 0;
		graph.edge[1].dest = 2;
		graph.edge[1].weight = 4;
		
		graph.edge[2].src = 1;
		graph.edge[2].dest = 2;
		graph.edge[2].weight = 3;
		
		graph.edge[3].src = 1;
		graph.edge[3].dest = 3;
		graph.edge[3].weight = 2;
		
		graph.edge[4].src = 1;
		graph.edge[4].dest = 4;
		graph.edge[4].weight = 2;
		
		graph.edge[5].src = 3;
		graph.edge[5].dest = 2;
		graph.edge[5].weight = 5;
		
		graph.edge[6].src = 3;
		graph.edge[6].dest = 1;
		graph.edge[6].weight = 1;
		
		graph.edge[7].src = 4;
		graph.edge[7].dest = 3;
		graph.edge[7].weight = -3;
		
		bellmanFord(graph, 0);
	}
	
	// Creates a graph with V vertices and E edges
	public static Graph createGraph(int V, int E){
		Graph graph = new Graph(V, E);
		graph.edge = new Edge[graph.E];
		for(int i=0; i<E; i++){
			graph.edge[i] = new Edge();
		}
		return graph;
	}
	
	// A utility function used to print the solution
	public static void printArr(int[] dist, int n){
		System.out.println("Vertex Distance from Source");
		for(int i=0; i<n; i++){
			System.out.format("%d \t\t %d\n", i, dist[i]);
		}
	}
	
	// The main function that finds shortest distances from src to all other
	// vertices using Bellman-Ford algorithm.  The function also detects negative
	// weight cycle
	public static void bellmanFord(Graph graph, int src){
		int V = graph.V;
		int E = graph.E;
		int[] dist = new int[V];
		
		// Step 1: Initialize distances from src to all other vertices as INFINITE
		for(int i=0; i<V; i++){
			dist[i] = Integer.MAX_VALUE;
		}
		dist[src] = 0;
		
		// Step 2: Relax all edges |V| - 1 times. A simple shortest path from src
	    // to any other vertex can have at-most |V| - 1 edges
		for(int i=1; i<=V-1; i++){
			for(int j=0; j<E; j++){
				int u = graph.edge[j].src;
				int v = graph.edge[j].dest;
				int weight = graph.edge[j].weight;
				dist[v] = Math.min(dist[v], dist[u]+weight);
			}
		}
		
		// Step 3: check for negative-weight cycles.  The above step guarantees
	    // shortest distances if graph doesn't contain negative weight cycle.  
	    // If we get a shorter path, then there is a cycle.
		for(int i=0; i<E; i++){
			int u = graph.edge[i].src;
			int v = graph.edge[i].dest;
			int weight = graph.edge[i].weight;
			if(dist[u]+weight < dist[v]){
				System.out.println("Graph contains negative weight cycle");
			}
		}
		
		printArr(dist, V);
	}
	
	// a structure to represent a weighted edge in graph
	public static class Edge{
		int src, dest, weight;
		public Edge(){
		}
		public Edge(int src_, int dest_, int weight_){
			src = src_;
			dest = dest_;
			weight = weight_;
		}
	}

	// a structure to represent a connected, directed and weighted graph
	public static class Graph{
		int V, E;		// V-> Number of vertices, E-> Number of edges
		Edge[] edge;	// graph is represented as an array of edges.
		public Graph(){
		}
		public Graph(int V_, int E_){
			V = V_;
			E = E_;
		}
	}
}

http://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/

https://blog.itu.dk/SGDS-E2012/files/2012/11/44demobellmanford.pdf

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值