算法-贝尔曼-福特算法
注:该文是本博主记录学习之用,没有太多详细的讲解,敬请谅解!
一、简介
贝尔曼-福特算法(Bellman–Ford algorithm )用于计算出起点到各个节点的最短距离,支持存在负权重的情况
-
它的原理是对图进行最多V-1次松弛操作,得到所有可能的最短路径。其优于狄克斯特拉算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达O(VE)。但算法可以进行若干种优化,提高了效率。
-
贝尔曼-福特算法每次对所有的边进行松弛,每次松弛都会得到一条最短路径,所以总共需要要做的松弛操作是V - 1次。在完成这么多次松弛后如果还是可以松弛的话,那么就意味着,其中包含负环。
二、场景
- 从起点出发是否存在到达各个节点的路径。
- 从起点出发到达各个节点最短路径。
- 是否存在负环路。
三、实现思路
-
初始化时将起点s到各个顶点v的距离dist(s->v)赋值为∞,dist(s->s)赋值为0
-
后续进行最多n-1次遍历操作,对所有的边进行松弛操作,假设:
所谓的松弛,以边ab为例,若dist(a)代表起点s到达a点所需要花费的总数,
dist(b)代表起点s到达b点所需要花费的总数,weight(ab)代表边ab的权重, 若存在:(dist(a) +weight(ab)) < dist(b)
则说明存在到b的更短的路径,s->…->a->b,更新b点的总花费为(dist(a) +weight(ab)),父节点为a
-
遍历都结束后,若再进行一次遍历,还能得到s到某些节点更短的路径的话,则说明存在负环路
四、java实现
如下图,求出A到各节点的最短路径
public class BellmanFord {
/**
* 实现思路:
* 1、初始化时将起点起点到各个顶点的距离赋值为(无穷大)∞,当前起点距离赋值为0
* 2、后续进行最多n-1次遍历操作
* @param args
*/
public static void main(String[] args){
//创建图
Edge ab = new Edge("A", "B", -1);
Edge ac = new Edge("A", "C", 4);
Edge bc = new Edge("B", "C", 3);
Edge be = new Edge("B", "E", 2);
Edge ed = new Edge("E", "D", -3);
Edge dc = new Edge("D", "C", 5);
Edge bd = new Edge("B", "D", 2);
Edge db = new Edge("D", "B", 1);
//需要按图中的步骤步数顺序建立数组,否则就是另外一幅图了,
//从起点A出发,步骤少的排前面
Edge[] edges = new Edge[] {ab,ac,bc,be,bd,ed,dc,db};
//存放到各个节点所需要消耗的时间
HashMap<String,Integer> costMap = new HashMap<String,Integer>();
//到各个节点对应的父节点
HashMap<String,String> parentMap = new HashMap<String,String>();
//初始化各个节点所消费的,当然也可以再遍历的时候判断下是否为Null
//i=0的时候
costMap.put("A", 0); //源点
costMap.put("B", Integer.MAX_VALUE);
costMap.put("C", Integer.MAX_VALUE);
costMap.put("D", Integer.MAX_VALUE);
costMap.put("E", Integer.MAX_VALUE);
//进行节点数n-1次循环
for(int i =1; i< costMap.size();i++) {
boolean hasChange = false;
for(int j =0; j< edges.length;j++) {
Edge edge = edges[j];
//该边起点目前总的路径大小
int startPointCost = costMap.get(edge.getStartPoint()) == null ? 0:costMap.get(edge.getStartPoint());
//该边终点目前总的路径大小
int endPointCost = costMap.get(edge.getEndPoint()) == null ? Integer.MAX_VALUE : costMap.get(edge.getEndPoint());
//如果该边终点目前的路径大小 > 该边起点的路径大小 + 该边权重 ,说明有更短的路径了
if(endPointCost > (startPointCost + edge.getWeight())) {
costMap.put(edge.getEndPoint(), startPointCost + edge.getWeight());
parentMap.put(edge.getEndPoint(), edge.getStartPoint());
hasChange = true;
}
}
if (!hasChange) {
//经常还没达到最大遍历次数便已经求出解了,此时可以优化为提前退出循环
break;
}
}
//在进行一次判断是否存在负环路
boolean hasRing = false;
for(int j =0; j< edges.length;j++) {
Edge edge = edges[j];
int startPointCost = costMap.get(edge.getStartPoint()) == null ? 0:costMap.get(edge.getStartPoint());
int endPointCost = costMap.get(edge.getEndPoint()) == null ? Integer.MAX_VALUE : costMap.get(edge.getEndPoint());
if(endPointCost > (startPointCost + edge.getWeight())) {
System.out.print("\n图中存在负环路,无法求解\n");
hasRing = true;
break;
}
}
if(!hasRing) {
//打印出到各个节点的最短路径
for(String key : costMap.keySet()) {
System.out.print("\n到目标节点"+key+"最低耗费:"+costMap.get(key));
if(parentMap.containsKey(key)) {
List<String> pathList = new ArrayList<String>();
String parentKey = parentMap.get(key);
while (parentKey!=null) {
pathList.add(0, parentKey);
parentKey = parentMap.get(parentKey);
}
pathList.add(key);
String path="";
for(String k:pathList) {
path = path.equals("") ? path : path + " --> ";
path = path + k ;
}
System.out.print(",路线为"+path);
}
}
}
}
/**
* 代表"一条边"的信息对象
*
* @author Administrator
*
*/
static class Edge{
//起点id
private String startPoint;
//结束点id
private String endPoint;
//该边的权重
private int weight;
public Edge(String startPoint,String endPoint,int weight) {
this.startPoint = startPoint;
this.endPoint = endPoint;
this.weight = weight;
}
public String getStartPoint() {
return startPoint;
}
public String getEndPoint() {
return endPoint;
}
public int getWeight() {
return weight;
}
}
}
五、小结
1、贝尔曼-福特算法Bellman–Ford主要用于存在负权重的方向图中(没有负权重也可以用,但是效率比狄克斯特拉算法低很多),搜索出源点到各个节点的最短路径
2、Bellman–Ford可以判断出图是否存在负环路,但存在负环路的情况下不支持计算出各个节点的最短路径。只需要在结束(节点数目-1)次遍历后,再执行一次遍历,若还可以更新数据则说明存在负环路