chi-square test或称卡方检验

原文链接:http://www.cnblogs.com/emanlee/archive/2008/10/25/1319569.html

未全部转载

x2检验(chi-square test)或称卡方检验

    x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。

    一、四格表资料的x2检验

    例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?

表20-11 两种疗法治疗卵巢癌的疗效比较

组别 有效 无效 合计 有效率(%)
化疗组 19 24 43 44.2
化疗加放疗组 34 10 44 77.3
合计 53 34 87 60.9

    表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:

    式中A为实际数,以上四格表的四个数据就是实际数。T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。兹以表20-11资料为例检验如下。

    检验步骤:

    1.建立检验假设:

    H0:π1=π2

    H1:π1≠π2

    α=0.05

    2.计算理论数(TRC),计算公式为:

    TRC=nR.nc/n 公式(20.13)

    式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。

    第1行1列: 43×53/87=26.2

    第1行2列: 43×34/87=16.8

    第2行1列: 44×53/87=26.8

    第2行2列: 4×34/87=17.2

    以推算结果,可与原四项实际数并列成表20-12:

表20-12 两种疗法治疗卵巢癌的疗效比较

组别 有效 无效 合计
化疗组 19(26.2) 24(16.8) 43
化疗加放疗组 34(26.8) 10(17.2) 44
合计 53 34 87

    因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:

    T1.1=26.2

    T1.2=43-26.2=16.8

    T2.1=53-26.2=26.8

    T2.2=44-26.2=17.2

    3.计算x2值 按公式20.12代入

    4.查x2值表求P值

    在查表之前应知本题自由度。按x2检验的自由度v=(行数-1)(列数-1),则该题的自由度v=(2-1)(2-1)=1,查x2界值表(附表20-1),找到x20.001(1)=6.63,而本题x2=10.01即x2>x20.001(1),P<0.01,差异有高度统计学意义,按α=0.05水准,拒绝H0,可以认为采用化疗加放疗治疗卵巢癌的疗效比单用化疗佳。

    通过实例计算,读者对卡方的基本公式有如下理解:若各理论数与相应实际数相差越小,x2值越小;如两者相同,则x2值必为零,而x2永远为正值。又因为每一对理论数和实际数都加入x2值中,分组越多,即格子数越多,x2值也会越大,因而每考虑x2值大小的意义时同时要考虑到格子数。因此自由度大时,x2的界值也相应增大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值