MCP协议如何使用附如何国内使用订阅CursorPro会员

Anthropic 的 Model Context Protocol (MCP) 是人工智能领域的一项重要尝试,它致力于为大语言模型(LLMs)与外部数据源之间建立标准化、开放化的连接。接下来如何简单介绍一下如何使用该协议,同时对 MCP 协议进行全面评价,分为背景意义、技术亮点、实际影响和潜在挑战几个方面。


1. 背景意义:解决数据互通的痛点

随着大模型在多个领域的广泛应用,数据互通问题逐渐显现:

  • **现状:**大模型往往作为“孤岛”运行,难以直接访问实时数据源(如企业内部数据库、实时文档、在线服务等)。
  • **需求:**开发者通常需要为每个应用场景定制专用的适配器或插件,这既耗时费力,又缺乏可扩展性。

MCP 的发布正是为了解决这一痛点。通过定义一个标准化的协议,它允许开发者在无需重复开发的情况下快速连接模型与数据源,极大提升了模型的通用性和落地效率。


2. 技术亮点:结构化、开放化、可控性

MCP 协议具备以下核心技术特点:

(1)统一的数据互联标准

MCP 提供了一种统一的协议接口,使得模型可以通过 MCP 客户端访问任何实现了 MCP 服务器的外部数据源(如 API、数据库、文档管理系统)。
**亮点:**这种标准化方式降低了模型与多样化数据源之间的连接复杂度,显著节省开发时间。

(2)开放生态

MCP 作为开放协议,允许任何开发者为其产品创建 MCP 服务器。
**实际意义:**这意味着整个生态将快速扩展,形成类似 HTTP 和 REST API 的网络效应,推动模型与应用场景的无缝融合。

(3)安全与权限管理

协议内置了严格的权限控制机制,数据源的所有者始终掌握访问权。模型在获取数据时需要经过明确授权,避免数据泄露和滥用问题。
**好处:**这一特性尤其适合金融、医疗等对数据安全要求高的场景。


PS:目前使用最多的编程工具就是Cursor的,包含两个top AI厂商模型(ChatGPT/Claude)绝对订阅升级CursorPro会员很划算,感觉又让我薅到羊毛了,CursorPro升级教程可以参考:Cursor升级教程

3. 实际影响:从工具到产业的深远变化

MCP 的实际影响已经初见端倪,其潜在的应用场景和价值包括:

(1)开发效率的提升

以往,开发者需要针对不同的数据源开发多个专用适配器;而有了 MCP,只需一次接入即可访问多种数据源。这种“写一次、跑多处”的特性大幅降低了开发和运维成本。

(2)推动行业应用的深度融合

例如:

  • **企业应用:**MCP 可以帮助大模型实时获取企业 CRM、ERP 数据,生成实时报告或优化运营决策。
  • **开发工具:**诸如 Replit 和 Sourcegraph 等工具已经宣布支持 MCP,未来开发者可以直接调用模型生成代码、调试等,提高生产力。

(3)形成标准化生态

MCP 如果推广成功,将类似于 HTTP 协议在互联网时代的作用,为 AI 系统的互联互通奠定基础。

MCP协议简单示例参考

1. 了解 MCP 的核心架构

MCP 采用客户端-服务器架构,主要组件包括:

  • MCP 客户端(Host): 如 Claude Desktop、集成开发环境(IDE)等,希望通过 MCP 访问资源的应用程序。
  • MCP 服务器(Server): 提供特定功能或数据资源的服务端,实现 MCP 协议以供客户端访问。
  • 传输层(Transport Layer): 负责客户端与服务器之间的通信,可采用标准输入输出(Stdio)或 HTTP 等方式。

这种架构确保了 LLM 应用与外部资源之间的安全、可控的交互。

2. 设置 MCP 客户端

以 Claude Desktop 为例,配置 MCP 客户端的步骤如下:

  1. 安装 Claude Desktop: 确保已在 macOS 或 Windows 系统上安装最新版本的 Claude Desktop。

  2. 配置 MCP 服务器: 在 Claude Desktop 的配置文件中,添加所需的 MCP 服务器信息,例如:

    {
      "mcpServers": {
        "filesystem": {
          "command": "npx",
          "args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"]
        },
        "git": {
          "command": "uvx",
          "args": ["mcp-server-git", "--repository", "path/to/git/repo"]
        }
      }
    }
    

    此配置指定了 Claude Desktop 应连接的 MCP 服务器及其参数。

3. 开发 MCP 服务器

根据需求,开发者可以使用官方提供的 SDK 创建自定义的 MCP 服务器。以下是使用 Python 开发 MCP 服务器的示例:

  1. 安装必要的工具:

    # 安装 uv 工具
    brew install uv
    
    # 安装 Python 及相关依赖
    pip install httpx python-dotenv
    
  2. 创建 MCP 服务器脚本:

    import os
    import httpx
    from dotenv import load_dotenv
    from mcp.server import Server
    
    # 加载环境变量
    load_dotenv()
    
    # 获取 API 密钥
    API_KEY = os.getenv("YOUR_API_KEY")
    
    # 初始化 MCP 服务器
    app = Server("your-server-name")
    
    # 定义资源列表处理器
    @app.list_resources()
    async def list_resources():
        # 返回可用资源列表
        return [...]
    
    # 定义资源读取处理器
    @app.read_resource()
    async def read_resource(uri):
        # 根据 URI 读取并返回资源内容
        return ...
    
  3. 运行 MCP 服务器:

    uvx your-server-script.py
    

通过上述步骤,您可以创建并运行自定义的 MCP 服务器,供 MCP 客户端访问。

4. 使用 MCP 进行交互

配置完成后,MCP 客户端即可通过 MCP 协议与服务器进行交互,执行以下操作:

  • 列出资源: 客户端请求服务器提供可用资源的列表。
  • 读取资源: 客户端请求访问特定资源的内容。
  • 调用工具: 客户端调用服务器提供的特定功能或工具。

这种交互方式使 LLM 应用能够安全、受控地访问外部数据源和工具,提升其功能和应用范围。


4. 潜在挑战与局限

虽然 MCP 展现出巨大潜力,但目前仍然存在以下挑战:

(1)标准化的接受度

  • 生态的建立需要时间和规模效应,MCP 必须吸引更多企业和开发者加入,才能真正成为行业标准。
  • 竞争协议的存在(如 LangChain 等框架)可能影响 MCP 的普及速度。

(2)数据安全和隐私

尽管 MCP 提供了权限控制,但如何避免“授权过度”仍需进一步完善。例如,模型可能在访问大量数据后,生成难以追踪的二次推断信息。

(3)性能与适配问题

  • 实现 MCP 协议的服务器性能是否足够高,直接决定了协议的用户体验。
  • 各种不同类型的数据源(如视频、音频)如何高效接入 MCP 仍需探索。

5. 总结与评价

Anthropic 发布的 MCP 协议为大模型的实用化与生态化提供了全新的视角。通过统一的标准,它填补了大模型与外部数据之间的互通鸿沟,并为开发者提供了一种低成本、高效率的解决方案。

总体评价:

  • **优点:**解决实际痛点,技术设计合理,具有潜在的网络效应。
  • **不足:**生态推广和性能优化仍需时间。

MCP 的成功与否,将直接影响 AI 系统的未来发展模式。如果它能够在行业中推广开来,甚至成为“AI 世界的 HTTP 协议”,那么它的影响力将不亚于 AI 本身的出现。

期待更多实际案例与行业反馈,MCP 的未来值得持续关注。

参考资料

有关 MCP 的更多信息和详细文档,请参考以下资源:

通过深入了解和实践,您可以充分利用 MCP 协议,实现 LLM 应用与外部资源的高效集成。

### 如何在项目中引入和配置 DeepSeekV3 #### 1. 安装依赖项 为了使 DeepSeekV3 正常工作,需安装必要的 Python 库和其他依赖项。假设使用的是虚拟环境来管理项目的依赖关系。 ```bash python -m venv venv source venv/bin/activate # Linux/MacOS venv\Scripts\activate # Windows pip install deepseekv3 cline mcpserver obsidian-vscode-plugin ``` 上述命令创建了一个新的虚拟环境并激活它,接着安装了 `deepseekv3` 及其他所需的包[^1]。 #### 2. 配置 Cline 和 MCP Server 接下来,在项目根目录下设置 `.cline.json` 文件以连接到 DeepSeekV3 大型语言模型: ```json { "model": "DeepseekV3", "api_key": "<your_api_key>", "base_url": "https://api.deepseek.com/v1" } ``` 对于 MCP Server 的配置,则可以在同一级别的文件夹内建立名为 `config.yaml` 的 YAML 文件: ```yaml knowledge_base_path: "./obsidian_knowledge_base/" prompt_templates_directory: "./prompts/" logging_level: INFO port: 8080 ``` 这些配置指定了知识库的位置以及提示词模板所在的路径等重要参数。 #### 3. 初始化 Obsidian 文档结构 利用 Obsidian 创建标准的前后端开发文档模版,并将其放置于版本控制系统之外的一个独立位置以便后续复制至各个具体项目之中。此操作可以通过 Obsidian 自带的功能完成,也可以借助脚本自动化处理。 #### 4. 整合 VSCode 插件与 GitLab 流程 确保团队成员都已安装好支持 Cline 或 Roo-Cline 功能扩展后的 Visual Studio Code 编辑器;同时调整 CI/CD 管道使得每次提交都能触发相应的构建任务并将更新同步回远程仓库。 #### 5. 开发自定义提示词模板 基于实际应用场景设计多种类型的查询语句供开发者调用,从而提高工作效率的同时也保证了代码质量的一致性和准确性。例如,可以为常见的 CRUD 操作准备专门的提示词模式。 ```python def generate_crud_prompt(operation, table_name): template = f""" Perform a {operation} operation on the '{table_name}' database table. Requirements: - Ensure transaction safety during execution. - Return affected row count after completion. Example usage in SQL: INSERT INTO users (name, email) VALUES ('John Doe', 'john@example.org'); Please provide equivalent code snippet using ORM framework of choice. """ return template.strip() ``` 这段函数可以根据传入的操作类型(如插入、删除)及表名来自动生成对应的数据库交互指令。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值