堆排序实际上是利用堆的性质来进行排序的,我们通常说的堆就是二叉堆,二叉堆又称完全二叉树或者近似完全二叉树。堆排序是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。数组可以根据索引直接获取元素,时间复杂度为O(1)。
最大堆的特性如下:
- 父结点的键值总是大于或者等于任何一个子节点的键值
- 每个结点的左子树和右子树都是一个最大堆
最小堆的特性如下:
- 父结点的键值总是小于或者等于任何一个子节点的键值
- 每个结点的左子树和右子树都是一个最小堆
算法思想:
将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
- 构建初始堆。一般升序采用大顶堆,降序采用小顶堆。从第一个非叶子结点从下至上,从右至左调整结构;
- 交换堆顶元素和末尾元素,使最大值沉到数组末尾,重新调整堆结构,使其满足定义;
- 然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换,直到整个序列有序。
代码实现:
import java.util.Arrays;
public class 堆排序 {
public static int[] heapSort(int[] arr){
调整堆要从最后一个非叶子节点开始
for(int i=arr.length/2-1;i>=0;i--){
adjustHeap(arr,i,arr.length);
}
//交换,再调整
for(int j=arr.length-1;j>0;j--){
swap(arr,0,j);
adjustHeap(arr, 0, j);
}
return arr;
}
private static void swap(int[] arr, int i, int j) {
int tmp=arr[i];
arr[i]=arr[j];
arr[j]=tmp;
}
public static void adjustHeap(int[] arr,int i,int length){
int temp=arr[i];
for(int k=i*2+1;k<length;k=k*2+1){
if(k+1<length&&arr[k]<arr[k+1]){ //如果左子节点小于右子节点,k指向右子节点
k++;
}
if(arr[k]>temp){
arr[i]=arr[k];
i=k;
}else{
break;
}
}
arr[i]=temp; //把temp值放到最终的位置
}
public static void main(String[] args){
int[] arr={9,8,7,6,5,4,3,2,1};
heapSort(arr);
System.out.println(Arrays.toString(arr));
}
}