下面内容来自wiki
Resolution of multiple rules
How does the NTM "know" which of these actions it should take?
There are two ways of looking at it. One is to say that the machine is the "luckiest possible guesser";
it always picks the transition that eventually leads to an accepting state, if there is such a transition.
The other is to imagine that the machine "branches" into many copies, each of which follows one of the possible transitions.
Whereas a DTM has a single "computation path" that it follows, an NTM has a "computation tree".
If at least one branch of the tree halts with an "accept" condition, we say that the NTM accepts the input.
大体解释:
第一种解释:
非确定型图灵机,它在进行计算的时候,会自动选择最优路径进行计算。通俗地说,它有预测能力。
第二种解释:
机器把分支拷贝成很多份,之后每一个转移头跟着一份。