简单QA:TF-IDF句子相似度计算

该博客介绍了如何利用TF-IDF模型计算句子之间的相似度,以匹配问题与答案。首先,对问题文件进行分词和去停用词处理,然后通过TF-IDF模型找出与模板问题相似的问题,返回相应答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单介绍一下基于TF-IDF计算句子相似度,并得到问题对应的答案过程:

  1. 准备好问题文件,答案文件,问题与答案一一对应,例如:
    在这里插入图片描述在这里插入图片描述
  2. 对问题文件进行分词、去停用词预处理操作
    在这里插入图片描述
  3. 建立TF-IDF模型,计算所提问题与模板问题中相似度,将满足相似度问题对应的答案返回。关键代码如下:
from gensim import corpora, models, similarities
from preprocess_data import cut_stop_words
import numpy as np
import linecache


def similarity(query_path, query):
    """
    :func: 计算问题与知识库中问题的相似度
    :param query_path: 问题文件所在路径
    :param query: 所提问题
    :return: 返回满足阈值要求的问题所在行索引——对应答案所在的行索引

    """
    class MyCorpus():
        def __iter__(self):
            for line in open(query_path, &
namespace ServiceRanking { /// <summary> /// Summary description for TF_IDFLib. /// </summary> public class TFIDFMeasure { private string[] _docs; private string[][] _ngramDoc; private int _numDocs=0; private int _numTerms=0; private ArrayList _terms; private int[][] _termFreq; private float[][] _termWeight; private int[] _maxTermFreq; private int[] _docFreq; public class TermVector { public static float ComputeCosineSimilarity(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFER LENGTH"); float denom=(VectorLength(vector1) * VectorLength(vector2)); if (denom == 0F) return 0F; else return (InnerProduct(vector1, vector2) / denom); } public static float InnerProduct(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFFER LENGTH ARE NOT ALLOWED"); float result=0F; for (int i=0; i < vector1.Length; i++) result += vector1[i] * vector2[i]; return result; } public static float VectorLength(float[] vector) { float sum=0.0F; for (int i=0; i < vector.Length; i++) sum=sum + (vector[i] * vector[i]); return (float)Math.Sqrt(sum); } } private IDictionary _wordsIndex=new Hashtable() ; public TFIDFMeasure(string[] documents) { _docs=documents; _numDocs=documents.Length ; MyInit(); } private void GeneratNgramText() { } private ArrayList GenerateTerms(string[] docs) { ArrayList uniques=new ArrayList() ; _ngramDoc=new string[_numDocs][] ; for (int i=0; i < docs.Length ; i++) { Tokeniser tokenizer=new Tokeniser() ; string[] words=tokenizer.Partition(docs[i]); for (int j=0; j < words.Length ; j++) if (!uniques.Contains(words[j]) ) uniques.Add(words[j]) ; } return uniques; } private static object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值