sentinel中web页面配置及介绍

该博客总结了Sentinel管理Web页面的重要功能,介绍了流控规则,包括阈值类型、流控模式和效果等,还展示了流控新增及效果演示。此外,阐述了熔断降级策略,如慢调用比例、异常比例和异常数,同时介绍了热点规则、系统规则和授权规则的配置与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sentinel web页面介绍

该博客对于sentinel管理web页面一些重要功能进行总结,有兴趣的小伙伴还可以移到官网
ps:官网:官网

sentinel 流控规则介绍

流量控制(flow control),其原理是监控应用流量的 QPS 或并发线程数等指标,当达到指定的阈值时对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。

资源名: 唯一名称,默认请求路径
针对来源: Sentine可以针对调用者进行限流,填写微服务名,默认default (不区分来源)
阈值类型/单机阈值:

  • QPS (每秒钟的请求数量) :当调用该api的QPS达到阈值的时候,进行限流
  • 线程数:当调用该api的线程数达到阈值的时候,进行限流

是否集群: 不需要集群
流控模式:

  • 直接: api达到限流条件时,直接限流
  • 关联:当关联的资源达到阈值时,就限流自己
  • 链路:只记录指定链路上的流量(指定资源从入口资源进来的流量,如果达到阈值,就进行限流) [api级别的针对来源]

流控效果:

  1. 快速失败:直接失败,抛异常
  2. Warm Up:根据codeFactor (冷加载因子,默认3)的值,从阈值/codeFactor, 经过预热时长,才达到设置的QPS阈值
  3. 排队等待:匀速排队,让请求以匀速的速度通过,阈值类型必须设置为QPS,否则无效

流控新增及各种效果演示

流控新增的方式有两种:

  1. 在簇点链路中找到已经发送的请求
  2. 在流控规则中直接新增流控

在这里插入图片描述
在这里插入图片描述

流控效果演示

先查看正常情况,后面就不粘这个图了
在这里插入图片描述
1.单个请求getA在1秒内请求数等于或者低于1才成功,如果超过这个阈值那么直接返回sentinel的错误页面
在这里插入图片描述

在这里插入图片描述
2.请求getA关联了请求getB,当请求getB在1秒之内请求数超过单机阈值时,请求getA会直接返回sentinel错误页面
在这里插入图片描述
3.请求getA在warm up 模式中,如果请求数QPS在10秒之内小于3次(预热效果:加载因子默认是3,请求数QPS=单机阈值➗加载因子)请求那么正常,超过就抛出异常。但是超过10秒就恢复正常配置的10次
在这里插入图片描述
4.对于请求getA,多次请求会成为一个队列,并且1秒处理10个请求,并且如果请求超过500就抛出异常
在这里插入图片描述

sentinel 熔断降级

概述
除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方 API 等。例如,支付的时候,可能需要远程调用银联提供的 API;查询某个商品的价格,可能需要进行数据库查询。然而,这个被依赖服务的稳定性是不能保证的。如果依赖的服务出现了不稳定的情况,请求的响应时间变长,那么调用服务的方法的响应时间也会变长,线程会产生堆积,最终可能耗尽业务自身的线程池,服务本身也变得不可用。
在这里插入图片描述
现代微服务架构都是分布式的,由非常多的服务组成。不同服务之间相互调用,组成复杂的调用链路。以上的问题在链路调用中会产生放大的效果。复杂链路上的某一环不稳定,就可能会层层级联,最终导致整个链路都不可用。因此我们需要对不稳定的弱依赖服务调用进行熔断降级,暂时切断不稳定调用,避免局部不稳定因素导致整体的雪崩。熔断降级作为保护自身的手段,通常在客户端(调用端)进行配置。

Sentinel 提供以下几种熔断策略:

慢调用比例 (SLOW_REQUEST_RATIO): 选择以慢调用比例作为阈值,需要设置允许的慢调用 RT(即最大的响应时间),请求的响应时间大于该值则统计为慢调用。当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且慢调用的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求响应时间小于设置的慢调用 RT 则结束熔断,若大于设置的慢调用 RT 则会再次被熔断。
异常比例 (ERROR_RATIO): 当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且异常的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。异常比率的阈值范围是 [0.0, 1.0],代表 0% - 100%。
异常数 (ERROR_COUNT): 当单位统计时长内的异常数目超过阈值之后会自动进行熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。

熔断规则测试

这边只测试一种配置,其他可以自己配置玩一下,字面上就可以理解了O(∩_∩)O哈哈~

  • 慢调用比例 (SLOW_REQUEST_RATIO)
    测试要求: sentinel页面配置:请求时间在500毫秒以上的请求不超过1,并且最小请求数是1。Java代码请求代码中直接睡眠1秒。通过postman发送多个请求,然后在浏览器请求localhost:8401/getC,浏览器页面返回了sentinel的默认错误。
    页面配置
    慢调用比例
    postman:设置一个请求集合,并且开启100个线程,每500毫秒执行一次
    在这里插入图片描述
    代码
/**
     * 测试熔断规则1:慢调用比例 (SLOW_REQUEST_RATIO)
     * web页面配置了500毫秒,方法直接设置睡眠1秒,那么直接进入熔断
     * @return
     */
    @GetMapping("getC")
    public String getC(){
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return "it is C";
    }

验证结果
在这里插入图片描述

sentinel热点规则配置

何为热点?热点即经常访问的数据。很多时候我们希望统计某个热点数据中访问频次最高的 Top K 数据,并对其访问进行限制。比如:
商品 ID 为参数,统计一段时间内最常购买的商品 ID 并进行限制
用户 ID 为参数,针对一段时间内频繁访问的用户 ID 进行限制

配置理解

当sentinel配置热点规则之后,浏览器触发了这个规则,那么在Java代码中会通过@SentinelResource注解进入到配置好的后处理方法中。
sentinel页面配置
在这里插入图片描述
代码

 /**
     * @SentinelResource(value = "testHotKey",blockHandler = "deal_testHotKey")
     *      当浏览器访问请求时候超过了web配置的规则(这里配置了热点规则),会进入到deal_testHotKey方法进行处理
     * @param p1
     * @param p2
     * @return
     */
    @GetMapping("/testHotKey")
    @SentinelResource(value = "testHotKey",blockHandler = "deal_testHotKey")
    public String testHotKey(@RequestParam(value = "p1",required = false) String p1, @RequestParam(value = "p1",required = false) String p2 ){
        return "it is testHotKey";
    }

    /**
     * sentinel规则达到之后后处理方法
     * @param p1
     * @param p2
     * @param blockException
     * @return
     */
    public String deal_testHotKey (String p1, String p2, BlockException blockException){
        return "it is deal_testHotKey";
    }

验证结果
在这里插入图片描述

系统规则

Sentinel 系统自适应限流从整体维度对应用入口流量进行控制,结合应用的 Load、CPU 使用率、总体平均 RT、入口 QPS 和并发线程数等几个维度的监控指标,通过自适应的流控策略,让系统的入口流量和系统的负载达到一个平衡,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。
系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量生效。入口流量指的是进入应用的流量(EntryType.IN),比如 Web 服务或 Dubbo 服务端接收的请求,都属于入口流量。

系统规则支持以下的模式:
Load 自适应(仅对 Linux/Unix-like 机器生效):系统的 load1 作为启发指标,进行自适应系统保护。当系统 load1 超过设定的启发值,且系统当前的并发线程数超过估算的系统容量时才会触发系统保护(BBR 阶段)。系统容量由系统的 maxQps * minRt 估算得出。设定参考值一般是 CPU cores * 2.5。
CPU usage(1.5.0+ 版本):当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0-1.0),比较灵敏。
平均 RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
并发线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。
原理建议上之前粘的官网上去看,个人观点是有点太一刀切了,最好用的大概率就是CPU限制或者自适应了
这边只配置最简单的QPS请求数据演示,具体详细的自适应限流的示例可以去官网:官网demo
在这里插入图片描述
配置了上面的规则,那么你任意一个请求1秒超过1次都会返回默认页面
在这里插入图片描述

sentinel授权规则

很多时候,我们需要根据调用来源来判断该次请求是否允许放行,这时候可以使用 Sentinel 的来源访问控制(黑白名单控制)的功能。来源访问控制根据资源的请求来源(origin)限制资源是否通过,若配置白名单则只有请求来源位于白名单内时才可通过;若配置黑名单则请求来源位于黑名单时不通过,其余的请求通过。官网demo
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值