AFSim仿真系统—03 跟踪的不确定性和协方差

本栏目将对《AFSim 2.9中文参考手册》进行持续更新,欢迎关注交流!

对本书全文和AFSIM其它资料感兴趣的伙伴,可四新作者获取~

全部内容索引请看 ⬇️⬇️⬇️

《AFSim 2.9中文参考手册》-CSDN博客https://blog.csdn.net/henggesim/article/details/145566384


目录

Tracking Uncertainties(跟踪的不确定性)

Covariance Matrices(协方差矩阵)

Transformation of Covariance Matrices(协方差矩阵的变换)

Covariance Matrix Types in AFSIM(AFSIM中的协方差矩阵类型)

Weighted Average Fusion of Covariances(协方差的加权平均方法)

Visualization of Covariance Matrices(协方差矩阵可视化)


Tracking Uncertainties(跟踪的不确定性)

在AFSIM中,跟踪不确定性通常源于传感器误差的处理。这些误差包括距离误差标准差range_error_sigma(),方位误差标准差azimuth_error_sigma()和仰角误差标准差elevation_error_sigma()。顾名思义,它们表示正态分布中的一个标准差()。这些误差在传感器的自然坐标系中定义,即波束坐标系(BCS),该坐标系通常(但不总是)与关节部件的部件坐标系(PCS)对齐。在这个坐标系中,x轴沿距离向量方向,方位和仰角误差定义了切向坐标的不确定性。

沿给定方向x,对于零均值,测量的方差定义为:

           公式1

其中,表示函数的期望值。

如符号所示,传感器误差的方差由sigma值的平方给出(它们符合正态分布)。对于给定的距离R,BCS(x,y,z)坐标系中的线性方差为:

           公式2

Covariance Matrices(协方差矩阵)

协方差衡量一个独立变量与另一个变量的依赖性或相关性。在三维笛卡尔坐标系(x,y,z)中,有三个协方差:(理解为)。一个变量与自身的协方差就是方差(即等)。

对于两个方向x和y,以及零均值,测量的协方差定义为:

            公式3

三维中的完整协方差集可以方便地表示为协方差矩阵的形式:

           公式4

测量协方差矩阵在BCS坐标系中表达传感器测量误差,仅在对角线上有非零值(它是一个对角矩阵):

   公式5

Transformation of Covariance Matrices(协方差矩阵的变换)

变换的目的

为了简化轨迹报告,通常将协方差表示为相对于一个公共坐标系;对于AFSIM,这个坐标系是世界坐标系(WCS)。因此,需要将测量协方差转换为与WCS对齐。

变换的流程

根据线性代数,使用以下关系可以将对角矩阵表示为非对角矩阵:

      公式6

其中,C是非对角协方差矩阵,T是用于将协方差转换为对角形式的矩阵。对于AFSIM,这个变换矩阵T是WCS到BCS的坐标变换,而C是我们想要的与WCS对齐的协方差矩阵。求解C:

      公式7

因此,对于每个测量矩阵M(如公式(5)所示),执行操作以生成存储在WsfTrack的测量协方差字段中的矩阵C。

这种转换确保了在不同坐标系之间的协方差矩阵的一致性和准确性,使得在AFSIM中进行多目标跟踪时能够有效地处理和报告轨迹数据。

Covariance Matrix Types in AFSIMAFSIM中的协方差矩阵类型)

尽管可能存在无限多种协方差矩阵类型,AFSIM仅识别两种类型,这些类型在WsfTracks中作为测量协方差或状态协方差(卡尔曼滤波器的产物)传递。其中一种形式如公式(4)所示,仅包括位置不确定性。另一种形式同时提供x、y和z方向上的位置和速度不确定性,并由一个6x6矩阵表示:

       公式8

其中,表示被跟踪目标的感知速度向量的分量。

Weighted Average Fusion of Covariances(协方差的加权平均方法)

在AFSIM中,使用加权平均融合方法,当协方差来自两个独立的原始轨迹时,进行协方差矩阵的融合。这一过程遵循参考文献1中的方程8.3.3-15(协方差融合方程):

         公式9

其中,代表来自两个不同原始轨迹的协方差矩阵,而C是融合后的协方差,存储在本地轨迹的状态协方差字段中。

通过使用协方差矩阵的逆(称为信息矩阵),可以得到方程(9)的更直观形式:

          公式10

在这种形式下,协方差融合方程变为:

这种方法通过将协方差矩阵转换为信息矩阵形式,简化了融合过程,并提供了一种有效的方式来处理多个传感器数据的融合。

Visualization of Covariance Matrices(协方差矩阵可视化)

以(4)中的形式表示的三维协方差可以表现为一个椭球,该椭球以轨迹的估计位置为中心,并根据对协方差进行对角化的变换进行定向(6)。这种表示作为可视化辅助工具非常有用,并且在AFSIM脚本中可以通过Ellipsoid和WsfDraw脚本类实现支持。例如,一个为轨迹测量协方差提供这种可视化的脚本如下所示:

script void DrawCovariance(WsfTrack aTrack)
   WsfDraw draw = {};
   draw.SetId(aTrack.TrackId().Number());
   draw.Erase(aTrack.TrackId().Number());
   draw.BeginLines();
   draw.Vertex(aTrack.Originator());
   draw.Vertex(aTrack.Target());
   draw.End();
   WsfCovariance PWCS = aTrack.MeasurementCovariance(); // The WCS-oriented covariance from the track
   draw.SetColor(1.0, 0.0, 0.0, 0.6);
   WsfGeoPoint trackLocation = aTrack.CurrentLocation();

   if (PWCS.IsValid() && aTrack.LocationValid())
   {
       double S = 100; // Scale factor to make small ellipsoids easier to see
       Ellipsoid e = PWCS.EllipsoidNED();  // NED-referenced ellipsoid representation of the covariance
       draw.BeginEllipsoid(e.OrientationHeadingDeg(), // See documentation.
                           e.OrientationPitchDeg(),
                           e.OrientationRollDeg(),
                           e.SemiAxisForward() * S,
                           e.SemiAxisSide() * S,
                           e.SemiAxisUp() * S);
       draw.Vertex(trackLocation);
       draw.End();
   }
end_script

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值