Airsim仿真平台介绍

Airsim是一款基于Unreal Engine构建的无人机、汽车等模拟器的开源平台,并且可以跨平台的通过PX4飞行控制器进行仿真控制,在物理和视觉上逼真的模拟环境使得它成为一款很好的平台。不仅模拟了汽车无人机等动力学模型,甚至对天气效果灯光控制也做出了非常好的模拟。并且Microsoft官方发布了很多测试环境,诸如森林、平原、乡村、山脉景观等。Airsim公开了API,可以通过Python等语言与仿真程序中的车辆或者无人机进行交互,可以使用这些API进行图像检索,获取状态,控制车辆等。相较于现实中的自动驾驶等实际应用,Airsim更好得实现了对于数据集的收集,相较于一些汽车公司动辄几百PB的数据资源,通过模拟器显然可以更好的构建网络学习而不用受制于数据收集的问题。而端到端的深度学习的提出是一种建模策咯,是对深度神经网络的成功响应。随着近些年硬件的升级进步(如GPU、FPGA等),使我们批量处理大量数据成为可能,相较于传统的ML,端到端深入学习更接近人类的学习方式,因为它允许神经网络将原始的数据直接映射到输出。本文的目的是将Airsim作为AI研究平台,收集数据进行深度学习,运用较少的数据集完成模型的建立,进而可以在Airsim平台上模拟运行自动驾驶汽车。

  1. 在VisualStudio2017上搭建Airsim

VisualStudio为Airsim提供了一个良好的编译环境,在这里,你可以访问并修改环境场景中的各种变量,包括设置遥控器或者方向盘这类与人有着更好交互体验的API。我们搭建好平台之后,就可以为我们数据收集提供一个方便的数据接口,具体结构和数据流在接下来进行介绍。

### AirSim仿真平台简介 AirSim是一个高度逼真的虚拟环境,主要用于无人驾驶车辆和无人机的研究与开发工作[^1]。该工具不仅支持多种类型的飞行器,还提供了丰富的API接口以便于研究人员实施控制逻辑、传感器数据获取等功能。 #### 安装指南 为了能够顺利安装并运行AirSim,在开始之前需确认计算机已满足最低硬件需求,并完成Unreal Engine或Unity编辑器的基础设置。对于希望快速上手的新用户来说,官方GitHub仓库内包含了详细的安装指导件,涵盖了Windows/Linux系统的具体操作流程[^2]。 #### 开发者资源 针对开发者而言,AirSim不仅仅局限于简单的模拟实验;它同样构建了一个类似于OpenAI Gym的标准框架,允许研究者们利用内置的物理引擎来进行更深入的学习探索。特别是关于深度强化学习方面的工作,AirSim集成了Stable Baselines3 (SB3),使得编写自定义奖励函数变得异常简便,从而加速了算法迭代过程。 ```python from airsim import MultirotorClient, ImageRequest, Vector3r import numpy as np client = MultirotorClient() client.confirmConnection() responses = client.simGetImages([ImageRequest(0, 4)]) # 获取摄像头图像 img_np = np.frombuffer(responses[0].image_data_uint8, dtype=np.uint8).reshape((720, 1280, 4)) ``` 此段Python脚本展示了如何通过AirSim API连接到模拟环境中的一架四轴飞行器,并请求其前置相机拍摄的照片。这仅仅是众多可能性中的冰山一角——更多高级特性等待着有兴趣的朋友去发掘!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值