常恒毅
码龄3年
关注
提问 私信
  • 博客:1,225
    1,225
    总访问量
  • 1
    原创
  • 1,336,666
    排名
  • 0
    粉丝
  • 0
    铁粉

个人简介:语音识别

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2021-06-16
博客简介:

hengyi_chang的博客

查看详细资料
个人成就
  • 获得4次点赞
  • 内容获得2次评论
  • 获得5次收藏
创作历程
  • 1篇
    2021年
成就勋章
TA的专栏
  • 语音识别
    1篇
兴趣领域 设置
  • 人工智能
    语音识别机器学习深度学习图像处理
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

349人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MoCha——单调块注意力模型

MoCha——单调块注意力模型 1.概述 加了soft attention的seq2seq模型,在很多领域取得了广泛的应用,例如机器翻译、词性标注等NLP任务,因为它们都可以看成是序列到序列的问题。但是对于语音问题,这个模型存在很明显的弊端: 时间复杂度很高: 因为对于soft attention的模型来说,decoder的每一个输出要计算encoder的每一个隐含状态的对应权重,所以时间复杂度为O(UT),其中U代表输出序列的长度,T代表输入序列的长度。对于语音任务来说,10ms的帧移就意味着1s的音频
原创
发布博客 2021.06.19 ·
1227 阅读 ·
4 点赞 ·
2 评论 ·
5 收藏