MoCha——单调块注意力模型

MoCha——单调块注意力模型

1.概述

加了soft attention的seq2seq模型,在很多领域取得了广泛的应用,例如机器翻译、词性标注等NLP任务,因为它们都可以看成是序列到序列的问题。但是对于语音问题,这个模型存在很明显的弊端:

  • 时间复杂度很高: 因为对于soft attention的模型来说,decoder的每一个输出要计算encoder的每一个隐含状态的对应权重,所以时间复杂度为O(UT),其中U代表输出序列的长度,T代表输入序列的长度。对于语音任务来说,10ms的帧移就意味着1s的音频有100帧,随便读一段话可能就有成百上千帧的输入,这是非常耗时的。
  • 做不到online:
    同样因为计算soft-attention需要考虑encoder每一个隐含状态,所以要等到输入全部输入之后才能计算,因而无法做到实时解码。

不过与机器翻译等任务不同,语音识别和语音生成的任务中输入和输出是单调对齐的,换句话说输入和输出享有通同一个自然的时间顺序,不涉及局部的颠倒。于是,Raffel等人在2017年的研究成果表明,对于这种单调对齐的seq2seq的问题,上述的两种弊端可以得到缓解。Raffel引入了一种叫hard monotonic attention的注意力机制,实现了线性时间复杂度online解码

然而与soft attention相比,hard monotonic attention也限制了模型的表达性,因为soft attention理论可以学习任意方式的对齐,而这是单调对齐做不到的。实验结果也表明使用单调对齐的hard monotonic attention模型表现落后于soft attention。

所以,MoCha就这样应运而生,它不是摩卡咖啡,而是Monotonic Chunk Attention。该机制保留了hard monotonic attention线性时间复杂度和实时解码的优势,同时也允许软对齐。它是如何做到的呢,简要来说,它先确定一个滑动窗口,也就是所谓的chunk,然后在这个窗口里的几个时间步上做soft attention。窗口的移动是单调的(只能沿着时间从左向右),而窗口什么时候该滑动、滑动多少,是由模型自己决定的,或者说是学习得到的。
在这里插入图片描述

上图是一个形象的展示,纵轴代表decoder输出序列的顺序,横轴代表encoder输出的隐含状态序列,颜色代表概率,每一横行概率相加应该是1。从图中我们可以看出soft attention可以实现任意的对齐;hard monotonic attention每一步决定向右移动几步,当然也可以不移动;而MoCha移动的是一个固定长度的窗口,窗口内部实现了软注意力。

MoCha的论文中还介绍了它的反向传播训练方式,该训练方式可以直接应用于现有的seq2seq模型。实验表明,MoCha使得单调注意力模型赶上了软注意力模型的性能,代价是参数量和计算成本的适度增加。

下面我们将详细介绍这一模型的模型结构以及训练过程。

2.MoCha的定义

上一小节中谈到的三种模型,实际上是依次被提出的,hard monotonic attention的提出是为了解决soft attention存在的问题,但是牺牲了模型的准确度。MoCha的提出既保留了hard monotonic attention的优点,也弥补了它在准确度上的劣势。

所以我们这一小节,按照顺序,先来回顾一下soft attention,再来讲一下hard monotonic attention与soft attention的不同,最后再讲一下MoCha在前两者的基础上做了哪些改进。

2.1 Soft Attention

在这里插入图片描述

对于一个由RNN encoder和RNN deconder组成的seq2seq模型结构来说:
x = { x 1 , x 2 , . . . , x T } h = { h 1 , h 2 , . . . , h T } s = { s 1 , s 2 , . . . , s U } y = { y 1 , y 2 , . . . , y U } x=\{x_1,x_2,...,x_T\}\\ h=\{h_1,h_2,...,h_T\}\\ s=\{s_1,s_2,...,s_U\}\\ y=\{y_1,y_2,...,y_U\}\\ x={ x1,x2,...,xT}h={ h1,h2,...,hT}s={ s1,s2,...,sU}y={ y1,y2,...,yU}
其中 h h h为encoder的隐含状态, s s s为decoder的隐含状态,T为输入序列的长度(在语音识别任务中就是帧数),U为输出序列的长度(在语音识别任务中是token的个数)。
h j = E n c o d e r R N N ( x j , h j − 1 ) s i = D e c o d e r R N N ( y i − 1 , s i − 1 , c i ) y i = O u t p u t ( s i , c i ) h_j=EncoderRNN(x_j,h_{j-1})\\ s_i=DecoderRNN(y_{i-1},s_{i-1},c_i)\\ y_i=Output(s_i,c_i) hj=EncoderRNN(xj,hj1)si=DecoderRNN(yi1,si1,ci)yi=Output(si,ci)
Attention可以就将其看做是一系列操作,经过这一系列操作之后Encoder的T个隐含状态 h h h就变成了U个context向量 c c c。这个 c c c就是将输入信息传给decoder的唯一通道。对于不同的attention实际上就是不同的操作,但是最终的效果就是将 h h h变成 c c c

对于soft attention来说,对应的操作如下所示:
e i , j = E n e r g y ( h j , s i − 1 ) = v ⊤ t a n h ( W h h j + W s s i − 1 + b ) α i , j = exp ⁡ ( e i , j ) ∑ k = 1 T exp ⁡ ( e i , k ) c i = ∑ j = 1 T α i , j h j e_{i,j}=Energy(h_j,s_{i-1})=v^\top tanh(W_hh_j+W_ss_{i-1}+b)\\ \alpha_{i,j}=\frac{\exp(e_{i,j})}{\sum_{k=1}^T{\exp(e_{i,k})}}\\ c_i=\sum_{j=1}^T{\alpha_{i,j}h_j} ei,j=Energy(hj,si1)=vtanh(Whhj+Wssi1+b)αi,j=k=1Texp(ei,k)exp(ei,j)ci=j=1Tαi,jhj
计算第 i i i个时间步的 c i c_i ci时候,首先对前一个时间步的 s i − 1 s_{i-1} si1计算和每一个 h h h的energy,然后经过softmax后得到当前时间步的输出对于每一个 h h h的权重系数 α \alpha α,然后加权相加,得到当前时间步的 c i c_i ci,这样decoder依次得到每一个 c i c_i ci,再结合前一步的隐含状态 s i − 1 s_{i-1} si1以及前一步的输出 y i − 1 y_{i-1} yi1就可以得到当前时间步的输出 y i y_i yi。因为计算每一个 c i c_i ci的时候要考虑每一个 h h h,所以soft attention的时空复杂度是 O ( T U ) O(TU) O(TU)

而且soft attention部分的计算无非是矩阵的乘法、加法、tanh激活函数,这些操作都是可以求导的,也就支持了反向传播。所以引入soft attention机制并不需要额外做什么事情便可以直接训练。

2.2 Hard Monotonic Attention

在hard monotonic attention中,我们依然来看一下,U个context向量 c c c是如何由T个隐含状态 h h h得到。首先对于decoder的第 i i i的时间步的输出来说,这种注意力机制从第 i − 1 i-1 i1的时间步对齐的 h h h开始依次遍历每一个 h h h,而不是像soft attention一样从头开始。假设decoder第 i − 1 i-1 i1个时间步对齐的 h h h的索引是 t i − 1 t_{i-1} ti1,也就是说 c i − 1 c_{i-1} ci1对应 h t i − 1 h_{t_{i-1}} hti1,那么计算 c i c_i ci的时候,我们对于所有的 j = t i − 1 , t i − 1 + 1 , . . . j=t_{i-1},t_{i-1}+1,... j=ti1,ti1+1,...依次计算 e i , j e_{i,j} ei,j,然后再通过一个sigmoid激活函数,计算出一个 p i , j p_{i,j} pi,j,它可以理解成“ c i c_i ci选择第 h j h_j

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值