题目很简单二叉树的中序遍历,数据结构的教材上都会有这样的示例代码。其实中序遍历有三种解法:
- 递归解法(recursive solution)
- 栈迭代解法(iterative way(stack))
- 莫里斯解法(morris traversal)
三种解法都是时间复杂度为O(n) 空间复杂度1和2为O(n),3为O(1)。
前两种解法都比较常见,第三种解法利用了线索树,只用到了两个指针,所以空间复杂度为常数(固定空间)。
树的结构如下:
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
递归解法的代码比较简单,我学过的数据结构课程里的示例代码就是用的递归解法,代码如下
class Solution{
public:
vector<int> inorderTraversal(TreeNode* root){
vector<int> res;
inorderTraversalre(root,res);
return res;
}
private:
void inorderTraversalre(TreeNode* node,vector<int>& res){
if(node){
inorderTraversalre(node->left,res);
res.push_back(node->val);
inorderTraversalre(node->right,res);
}
}
};
迭代解法跟递归解法类似,了解递归的原理之后很容易就可以仿照着写出来迭代的解法
class Solution{
public:
vector<int> inorderTraversal(TreeNode* root){
vector<int> res;
stack<TreeNode*> stk;
TreeNode* cur = root;
while(cur || !stk.empty()){
if(cur){
stk.push(cur);
cur = cur -> left;
}else if(!stk.empty()){
res.push_back(stk.top() -> val);
cur = stk.top() -> right;
stk.pop();
}
}
return res;
}
};
莫里斯解法(morris traversal)能够达到常数的空间复杂度,是利用了线索二叉树(threaded binary tree)的概念。但在实现过程中,不需要为节点分配额外的指针,只需要利用叶子结点的控制帧指向相应遍历顺序的后继结点即可。
morris解法只提供了中序遍历,稍作改变可以改为前序遍历,后序遍历比较有难度,一个一个介绍。
morris解法的算法描述如下:
1、如果当前结点的左孩子为空,则输出当前结点并将当前结点的右结点作为当前结点。
2、如果当前结点的左孩子不为空,则从当前结点的左子树找出当前结点的前去节点:
如果前驱结点p的右孩子为空,则将p的右孩子设为当前结点;否则,输出当前结点,并将p的右孩子置为空,并将当前当前结点的右孩子置为当前结点
3、重复1 ,2两步直到当前结点为空
算法描述比较容易理解,下面给出代码实现:
class Solution{
public:
vector<int> inorderTraversal(TreeNode* root){
vector<int> res;
TreeNode *cur = root, *pre = NULL;
while(cur){
if(cur -> left){
pre = cur -> left;
while( pre -> right && pre -> right != cur) pre = pre -> right;
if(pre -> right){
pre -> right = NULL;
res.push_back(cur -> val);
cur = cur -> right;
}else{
pre -> right = cur;
cur = cur -> left;
}
}else{
res.push_back(cur -> val);
cur = cur -> right;
}
}
return res;
}
};
至此,中序遍历三种实现介绍完毕。
参考blog:http://www.cnblogs.com/AnnieKim/archive/2013/06/15/morristraversal.html