积分理论

过年去了,好久不来,结果忘了密码,忙了半天,结果发现是很简单的一个组合。完成一些计划过的内容。下面补充的是积分的相关部分。

1. 不可能象测度理论那样简单而又比较深入的介绍积分理论。因而我们下面的文字与其说是在介绍几分理论,不如说是对于积分理论的一个简要补充。我们不打算给出详细的定义以及证明,要给出这些内容,在这里既没有必要也做不到。另一方面,这也得益于Omni兄对这方面内容的很好的介绍,这使得我可以偷懒。总之,有兴趣的读者还得自己去啃。这里是一个很粗的线条。

2. Riemann积分与连续性。简要回顾如何定义一个函数的积分。

分割积分区域,或积分区间。

在分割得到的小区域上取一个点,计算函数在该点的值,以此函数值乘以区域的体积。得到函数在这个小区域上的积分的近似值。

把所有这些近似值加起来,得到函数积分的一个总体上的近似值。这个值依赖于区域的分割,以及如何在每一个小的区域中选取特定的点。

为了消除上述近似值和本来的积分之间的差异,我们取极限。极限过程为,分割区域的方式越来越细。通常这样叙述,分割得到的小区域的最大直径趋于0.如果得到的极限值不依赖于区域的分割方式以及小区域中点的选取方式,则称所得的极限为该函数的定积分。注意,这个极限不同于我们在微积分中通常见到的极限,为了描述这种极限过程,一般来说需要引入所谓的定向极限。当然不引入这个极限也没有关系,只不过在相应的证明中,将或多或少的用到定向极限的性质。

事实上,完整地叙述Riemann积分是一件很麻烦的事情。比如,在Riemann积分理论中,从来没有清楚地表明在所有的函数中,哪些函数是Riemann可积的。只有在引入了Lebesgue积分理论后才很好的解决了这个问题。再如,一列Riemann可积的函数取极限,不一定是Riemann可积的。亦即,所有Riemann可积函数在合理的极限运算下不封闭,这是一个很不好的性质。这表明,我们在Riemann积分下讨论问题,总是有一些研究对象会跑出Riemann积分的有效范围。如果我们把这些漏掉的东西加进来,可以证明,刚好就是Lebesgue积分。换言之,Lebesgue积分对于极限运算是封闭的。这一点,也就是泛函分析中距离空间的完备化。当然实际上,完备化可以更加一般,对于局部凸的拓扑线性空间都可以定义其完备化,亦即可以抛开距离结构谈论极限运算的完备与否。

Dirichlet函数没有Riemann意义下的定积分。这表明如果在很小的区域上函数的震动很激烈,则定积分可能不存在。实际上,由Riemann积分的定义也可以看出这一点。

定理,Riemann可积的函数几乎处处连续。

3. Stieljes积分。实直线$/Bbb{R}$上的单调函数$F(x)$.定义了一个Stieljes测度。

可推广到有界变差函数。

4. Lebesgue积分,转换公式
$/int_/Omega fd/mu=/int_{-/infty}^/infty xdF(x)$.
其中,$F(x)=/mu/{/omega|f(/omega)/leq x/}$. 上述公式的左边为Lebesgue积分,右边为Stieljes积分。这个公式实际上相当于Lebesgue积分的定义。Riemann积分的定义中,需要对积分的区域进行分割。在Lebesgue积分中,先对函数的值域进行分割,这个分割诱导了积分空间的分割。

5. 函数空间。可测函数空间,可积函数空间,$L^p$空间,$L^/infty$.
Banach空间,泛函分析。

可测函数全体构成的集合,称为可测函数空间,这是一个线性空间。亦即,若$f,g$为可测函数,$a,b$为实数,则$af+bg$也是可测函数。实际上两个可测函数的乘积$fg$也是可测的。

积分存在的函数称为可积函数。全体可积函数的全体构成的集合称为可积函数空间。

设$f$为可测函数,若$|f|^p$可积,则称$f$为$L^p$函数。全体$L^p$函数构成的集合记作$L^p(X)$.对于$f/in L^p(X)$,定义$/|f/|_p=/int_X|f|^pf(x)/mu(dx)$.则可以验证$/|/|_p$为$L^p(X)$上的一个范数,$L^p(X)$在这个范数下成为一个Banach空间。

因而积分理论必然导致泛函分析。

6. 反过来,我们也可以从纯粹泛函分析的方式来定义Lebesgue积分。完备化。这对于学过泛函分析的读者是很容易的。


7. 收敛性。几乎处处收敛,依测度收敛,$L^p$范数收敛。

设$f,f_n$是一列可测函数,对于$x/in X$, $f(x),f_n(x)$是一列实数,因而可以谈论这一列实数的收敛性。考虑使得$f_n(x)$收敛到$f(x)$的全体$x$构成的集合,如果这个集合与全空间$X$仅仅相差一个0测集,亦即对几乎所有的$x/in X$, $f_n(x)$都收敛到$f(x)$, 则称$f_n$几乎处处收敛到$f$.

依测度收敛。

$L^p$收敛。

对于初学测度论、积分理论以及泛函分析的人来说,一个很麻烦的地方是各种各样的收敛性。比如在此,我们看到有3种不同的收敛性。为什么要引入这么多的各式各样的品种繁多的极限以及相应的收敛性呢?原因很简单。首先,有某种收敛性比没有好。其次,不是所有的极限都可以统一处理。再举一个简单的例子。考虑如下序列。
(1,0,0,0,0,…)
(0,1,0,0,0,…)
(0,0,1,0,0,…)
(0,0,0,1,0,…)
(0,0,0,0,1,…)

注意到,这个序列中的每一个都是一个单位长度的向量,无限维向量。一方面,这一列向量的长度都等于1,不可能收敛到0. 另一方面,这些向量似乎又收敛到0. 实际上,用极限来叙述,上述序列不可能在范数的意义下收敛到0,但是弱收敛到0.
上面的例子可以更具体。考虑$[0,2/pi]$上的三角函数序列$/sin nx,n=1,2,/cdots$.这个序列也是弱收敛到0,但是不是在范数意义下强收敛的。

注意,向量的范数就是向量的长度。另外,对这些收敛性有兴趣的读者可自行参考泛函分析,我们不一一列举其定义。

8. 测度与拓扑,Borel测度。这是测度理论与拓扑理论的结合。国内的测度论方面的教科书一般都不介绍拓扑空间上的测度论。回顾,测度理论首先需要讨论哪些集合是可测的。拓扑空间上的Borel可测集,是由那些有拓扑意义的集合,亦即开集和闭集出发,通过集合的可数交和可数并得到的集合。当然也可以由紧致子集出发来构造可测集,这样得到的是Baire可测集。这个理论本身并不复杂。

9. Riesz表示定理。局部紧Hausdorff拓扑空间上的正线性泛函来自于一个Borel测度。

Gelfand-Grothendieck-Connes’s idea:用函数空间来反映底空间的性质。Riesz表示定理可以看作这个庞然大物的一个前奏,或者说一个注释。实际上泛函分析中还有很多这种定理。

10. 测度与群结构,Haar测度。这是测度结构与群结构想结合产生的。基本的结论是局部紧群上存在一个在群乘法下不变的测度。确切地说应该是左乘,当然也可以是右乘,但对于非幺模群,不可能同时在左右乘积下不变。

11. 取值在线性空间上的函数的积分,这个线形空间一般而言是无限维的。通常称为Pettis积分。由于需要定义极限,所以不可能是单纯的线性空间,而是定义了极限的线性空间,这等价于一个拓扑线性空间。

12. 微分形式的积分。与基于测度的积分不同的另一种积分。可回顾在通常的高等数学中介绍的第二类积分。实际上,微分形式的积分可以用基于测度的积分来描述。
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值