泛函分析笔记7:弱收敛与弱星收敛

本文探讨了赋范空间中序列和算子的弱收敛与强收敛概念,包括序列的强收敛、弱收敛、一致有界性和弱星收敛,以及线性泛函和有界线性算子的收敛性。通过举例说明了不同收敛性的性质和相互关系,展示了在Banach空间中弱收敛与强收敛的等价条件。此外,还介绍了数值积分中如何构造逼近积分的有界线性泛函,并提出了G.Polya定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一致有界性原理的一个应用就是序列和算子的收敛性分析。

1. 序列收敛性

( X , ∥ ⋅ ∥ ) (X,\Vert\cdot\Vert) (X,),有 x n , x ∈ X x_n,x\in X xn,xX,称 x n x_n xn 强收敛 x x x,若 ∥ x n − x ∥ → 0 \Vert x_n-x\Vert \to 0 xnx0;称 x n x_n xn 弱收敛 x x x ∀ f ∈ X ′ \forall f\in X' fX 都有 f ( x n ) → f ( x ) f(x_n)\to f(x) f(xn)f(x),记为 x n ⟶ w x . x_n \stackrel{w}{\longrightarrow} x. xnwx.

关于弱收敛有以下几条性质:

  • x n ⟶ w x , x n ⟶ w y x_n \stackrel{w}{\longrightarrow} x, x_n \stackrel{w}{\longrightarrow} y xnwx,xnwy,则 x = y x=y x=y
  • x n ⟶ w x x_n \stackrel{w}{\longrightarrow} x xnwx,则存在 c ≥ 0 , ∥ x n ∥ ≤ c . c\ge0, \Vert x_n\Vert \le c. c0,xnc.

证明:仅证第二条。这个性质说明 x n x_n xn 有界,因此容易想到需要用一致有界性原理证明,但是该原理说明的是算子的一致有界,这里是元素 x n x_n xn 有界,因此又可以想到上一篇讲到的典范映射 J : X → X ′ ′ J:X\to X'' J:XX 从元素映射到算子。因此这里考虑 X ′ X' X 上的线性泛函 g n = J ( x n ) : X ′ → R g_n= J(x_n):X'\to \mathbb{R} gn=J(xn):XR,有 g n ( f ) = f ( x n ) , ∀ f ∈ X ′ . g_n(f)=f(x_n),\forall f\in X'. gn(f)=f(xn),fX. 于是有 f ( x n ) → f ( x ) f(x_n)\to f(x) f(xn)f(x),因而固定任一 f f f,都有 sup ⁡ n g n ( f ) < ∞ \sup_n g_n(f) < \infty supngn(f)<,同时由于 X ′ X' X 总为 Banach 空间,利用一致有界性原理有 sup ⁡ n ∥ g n ∥ = sup ⁡ n ∥ x n ∥ < ∞ \sup_n \Vert g_n\Vert =\sup_n \Vert x_n\Vert < \infty supngn=supnxn<。证毕。

定理 ( X , ∥ ⋅ ∥ ) (X,\Vert\cdot\Vert) (X,),有 x n , x ∈ X x_n,x\in X xn,xX,则 x n ⟶ w x x_n \stackrel{w}{\longrightarrow} x xnwx 当且仅当

  1. 存在 c ≥ 0 , ∥ x n ∥ ≤ c c\ge0,\Vert x_n\Vert\le c c0,xnc
  2. 并且存在 M ⊂ X ′ , span M ‾ = X ′ M\subset X',\overline{\text{span}M}=X' MX,spanM=X,对 ∀ f ∈ M , f ( x n ) → f ( x ) . \forall f\in M, f(x_n)\to f(x). fM,f(xn)f(x).(此时 M M M 称为完全集

NOTE:该定理简化了弱收敛的判断条件,只需要在 X ′ X' X 的一个子集上判断函数值是否收敛。

证明: " ⟹ " "\Longrightarrow" "" 易证;

" ⟸ " "\Longleftarrow" "",首先考虑 ∀ f ∈ span M \forall f\in \text{span}M fspanM,容易得到 f ( x n ) → f ( x ) f(x_n)\to f(x) f(xn)f(x)。然后对 ∀ g ∈ X ′ \forall g\in X' gX,那么存在 f m ∈ span M f_m\in\text{span}M fmspanM 使得 ∥ f m − g ∥ ≤ 1 / m \Vert f_m-g\Vert \le 1/m fmg1/m,因此
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ |g(x_n)-g(x)|&…
证毕。

例子 1:考虑 X = ℓ p ( 1 < p < ∞ ) X=\ell^p(1<p<\infty) X=p(1<p<),有 ( ℓ p ) ′ = ℓ q , 1 / p + 1 / q = 1. (\ell^p)'=\ell^q, 1/p+1/q=1. (p)=q,1/p+1/q=1. 考虑线性泛函 f y ( x ) = ∑ i y i x i , y ∈ ℓ q f_y(x)=\sum_i y_ix_i,y\in \ell^q fy(x)=iyixi,yq,有 ∥ f y ∥ = ∥ y ∥ q \Vert f_y\Vert=\Vert y\Vert_q fy=yq。我们考虑 X ′ X' X 的子空间 M = { e n , n ≥ 1 } M=\{e_n,n\ge1\} M={en,n1},其中 e n = ( . . . , 0 , 1 , 0 , . . . ) e_n=(...,0,1,0,...) en=(...,0,1,0,...) 表示只有第 n n n 个分量为 1,其余为 0。那么 span M ‾ = X ′ \overline{\text{span}M}=X' spanM=X,因此要想验证 x n x_n xn 是否弱收敛到 x x x 就只需要验证:1)其有界性;2)对每个 f e k , k ≥ 1 f_{e_k},k\ge1 fek,k1 是否有 f e k ( x n ) → f e k ( x ) ( n → ∞ ) . f_{e_k}(x_n)\to f_{e_k}(x)(n\to\infty). fek(xn)fek(x)(n).

强收敛与弱收敛之间有如下关系:

  • x n → x ⟹ x n ⟶ w x x_n\to x \Longrightarrow x_n \stackrel{w}{\longrightarrow} x xnxxnwx(即强收敛可以导出弱收敛);
  • dim X < ∞ \text{dim}X<\infty dimX<,则 x n ⟶ w x ⟹ x n → x x_n \stackrel{w}{\longrightarrow} x\Longrightarrow x_n\to x xnwxxnx(有限维赋范空间中,强收敛与弱收敛等价);

证明:仅证第二条。设 dim X = n < ∞ \text{dim}X=n<\infty dimX=n<,有限维赋范空间中我们可以找到一组基, x k = λ k , 1 e 1 + ⋯ + λ k , n e n x_k=\lambda_{k,1}e_1+\cdots+\lambda_{k,n}e_n xk=λk,1e1++λk,nen x = λ 1 e 1 + ⋯ + λ n e n x=\lambda_1 e_1+\cdots+\lambda_n e_n x=λ1e1++λnen。那么
λ k , 1 f ( e 1 ) + ⋯ + λ k , n f ( e n ) → λ 1 f ( e 1 ) + ⋯ + λ n f ( e n ) , ∀ f ∈ X ′ \lambda_{k,1}f(e_1)+\cdots+\lambda_{k,n}f(e_n) \to \lambda_{1}f(e_1)+\cdots+\lambda_{n}f(e_n), \quad\forall f\in X' λk,1f(e1)++λk,nf(en)λ1f(e1)++λnf(en),fX
由于 f ∈ X ′ f\in X' fX 任取,那么我们可以取 f i ( y ) = μ i f_i(y)=\mu_i fi(y)=μi,其中 y = μ 1 e 1 + ⋯ + μ n e n y=\mu_1 e_1+\cdots+\mu_n e_n y=μ1e1++μnen,即 f i f_i fi 取出来第 i i i 个坐标系数。由此可以得到 λ k , i → λ i ( k → ∞ ) \lambda_{k,i}\to\lambda_i(k\to\infty) λk,iλi(k),然后就容易得到 x n → x . x_n\to x. xnx. 证毕。

例子 2:有些无穷维空间中也可以得到 x n ⟶ w x    ⟺    x n → x x_n \stackrel{w}{\longrightarrow} x\iff x_n\to x xnwxxnx,例如 ℓ 1 . \ell^1. 1.

例子 3:无穷维 Hilbert 空间( ℓ 2 \ell^2 2,注意只有 2 − 2- 2范数才能定义出对应的内积),考虑 { e 1 , e 2 , … } \{e_1,e_2,\ldots\} {e1,e2,} H H H 的标准正交集,那么有 e n ⟶ w 0 e_n \stackrel{w}{\longrightarrow} 0 enw0 但是 e n ↛ 0 e_n \nrightarrow 0 en0。考虑 ∀ f ∈ H ′ \forall f\in H' fH,存在唯一的 z 0 ∈ H , f ( x ) = ⟨ x , z 0 ⟩ z_0\in H, f(x)=\langle x,z_0\rangle z0H,f(x)=x,z0,由Bessel方程 ∑ n ∣ ⟨ e n , z 0 ⟩ ∣ 2 ≤ ∥ z 0 ∥ 2 \sum_n|\langle e_n,z_0\rangle|^2\le \Vert z_0\Vert^2 nen,z02z02,因此 f ( e n ) → 0 ( n → ∞ ) , ∀ f ∈ H ′ f(e_n)\to 0(n\to \infty),\forall f\in H' f(en)0(n),fH,但另一方面 ∥ e n ∥ = 1 ↛ 0 \Vert e_n\Vert=1\nrightarrow0 en=10

2. 线性泛函收敛性

对于算子的收敛性,如线性泛函 f n ∈ X ′ f_n\in X' fnX 或者有界线性算子 T ∈ B ( X , Y ) T\in B(X,Y) TB(X,Y),收敛性的定义跟上面序列的收敛性是相似的,但是又略有不同。下面就先给出线性泛函收敛性的分析。

同样考虑赋范空间 X X X f , f n ∈ X ′ f,f_n\in X' f,fnX,称 f n f_n fn 弱星收敛 f f f,若任取 x ∈ X x\in X xX 都有 f n ( x ) → f ( x ) f_n(x)\to f(x) fn(x)f(x),记为 f n ⟶ w ⋆ f . f_n \stackrel{w\star}{\longrightarrow} f. fnwf.

NOTE:实际上这里的弱星收敛跟序列的弱收敛是完全对称的,因此他们的性质也是类似的。

  • 弱星收敛极限 f f f 唯一;
  • { f n } \{f_n\} {fn} 的任意子列均弱星收敛到 f f f
  • X X X 为 Banach 空间,则 { f n } \{f_n\} {fn} X ′ X' X 中为有界集

证明:仅证第三条,对于任意 x ∈ X x\in X xX,有 f n ( x ) → f ( x ) f_n(x)\to f(x) fn(x)f(x),因此 f n ( x ) f_n(x) fn(x) 有界,由一致有界性原理, sup ⁡ n ∥ f n ∥ < ∞ . \sup_n \Vert f_n\Vert<\infty. supnfn<. 证毕。

定理 X X XBanach 空间 f n , f ∈ X ′ f_n,f\in X' fn,fX,则 f n ⟶ w ⋆ f f_n \stackrel{w\star}{\longrightarrow} f fnwf 当且仅当

  1. 存在 c ≥ 0 , ∥ f n ∥ ≤ c c\ge0,\Vert f_n\Vert\le c c0,fnc
  2. 并且存在 M ⊂ X , span M ‾ = X M\subset X,\overline{\text{span}M}=X MX,spanM=X,对 ∀ x ∈ M , f n ( x ) → f ( x ) . \forall x\in M, f_n(x)\to f(x). xM,fn(x)f(x).

NOTE:该性质与序列弱收敛的性质完全对称,证明省略。

NOTE:对于 X ′ X' X 中的线性算子 f f f,也有范数的定义,因此我们也可以按照序列的收敛性来定义算子的收敛性。这个时候就用 X ′ X' X 代替上面的 X X X,用 X ′ ′ X'' X 代替上面的 X ′ X' X。我们可以得到什么样的强收敛和弱收敛定义呢?(下面并不是标准的数学定义,只是我为了引出之后的内容做的解释)

对于 f , f n ∈ X ′ f,f_n\in X' f,fnX,若满足 ∥ f n − f ∥ → 0 \Vert f_n-f\Vert\to 0 fnf0,则称 f n f_n fn 一致收敛 f f f;若对 ∀ g ∈ X ′ ′ \forall g\in X'' gX,都有 g ( f n ) → g ( f ) g(f_n)\to g(f) g(fn)g(f),那么称 f n f_n fn 强收敛 f f f;弱收敛的定义暂且不管。

注意从这个定义的字面意思来看,这里的一致收敛对应于上面序列的强收敛;这里的强收敛对应上面序列的弱收敛,它实际上也就对应于弱星收敛。这里就有两个值得思考的问题:1)**一致收敛和强收敛的区别是什么?**2)这里的强收敛为什么对应上面的弱收敛?

先看第2个问题:讲 Hahn-Banach 定理应用的时候我们讲到了典范映射,如果 X X X 为自反的,那么任意一个 g 0 ∈ X ′ ′ g_0\in X'' g0X 都唯一的对应于 X X X 中的元素 x 0 x_0 x0,并且满足 g 0 ( f ) = f ( x 0 ) , ∀ f ∈ X ′ g_0(f)=f(x_0),\forall f\in X' g0(f)=f(x0),fX。假设 X X X 是自反的,那么上面的强收敛定义就可以表述为 ∀ x ∈ X \forall x\in X xX,都有 f n ( x ) → f ( x ) f_n(x)\to f(x) fn(x)f(x),注意看!这是不是就是线性泛函弱星收敛的定义!也对应了序列的弱收敛。不过弱星收敛的定义里面并没有要求 X X X 是自反的。

那么再看第1个问题:一致收敛中要求 ∥ f n − f ∥ → 0 \Vert f_n-f\Vert\to0 fnf0,线性算子的范数是针对整个源空间考虑的;而强收敛中对每个 x ∈ X x\in X xX,关注 f n ( x ) → f ( x ) f_n(x)\to f(x) fn(x)f(x),也就是说关注的是每一个局部点。因此一致收敛要强于强收敛。

3. 一般有界线性算子收敛性

实际上一致收敛、强收敛、弱收敛的概念可以扩展到任意的有界线性算子定义。

X , Y X,Y X,Y 为赋范空间, T n ∈ B ( X , Y ) , T : X → Y T_n\in B(X,Y),T:X\to Y TnB(X,Y),T:XY 为线性算子,有三种收敛性:

  • { T n } \{T_n\} {Tn} 一致收敛 T T T,若 ∥ T n − T ∥ → 0 \Vert T_n-T\Vert \to 0 TnT0
  • { T n } \{T_n\} {Tn} 强收敛 T T T,若 ∀ x ∈ X , T n x → T x \forall x\in X,T_n x\to Tx xX,TnxTx
  • { T n } \{T_n\} {Tn} 弱收敛 T T T,若任取 x ∈ X , f ∈ Y ′ x\in X, f\in Y' xX,fY f ( T n x ) → f ( T x ) f(T_nx)\to f(Tx) f(Tnx)f(Tx)

容易看出来一致收敛 ⟹ \Longrightarrow 强收敛 ⟹ \Longrightarrow 弱收敛,但是反向则不成立,可以举出对应的反例。

例子 4(强收敛 ⇏ \nRightarrow 一致收敛): X = Y = ℓ 2 X=Y=\ell^2 X=Y=2 T n : ℓ 2 → ℓ 2 T_n:\ell^2\to\ell^2 Tn:22
T n : ( x 1 , x 2 , ⋯   ) ↦ ( 0 , ⋯   , 0 , x n + 1 , x n + 2 , ⋯   ) T_n: (x_1,x_2,\cdots) \mapsto (0,\cdots,0,x_{n+1},x_{n+2},\cdots) Tn:(x1,x2,)(0,,0,xn+1,xn+2,)
容易验证 T n T_n Tn 为有界线性算子, ∥ T n ∥ = 1 \Vert T_n\Vert=1 Tn=1。可以验证 T n T_n Tn 强收敛到 0 0 0 算子,即 T 0 x ≡ 0 T_0x\equiv 0 T0x0。但是 ∥ T n − T 0 ∥ = 1 ↛ 0 \Vert T_n-T_0\Vert=1\nrightarrow 0 TnT0=10,即不满足一致收敛。

例子 5(弱收敛 ⇏ \nRightarrow 强收敛): X = Y = ℓ 2 X=Y=\ell^2 X=Y=2 T n : ℓ 2 → ℓ 2 T_n:\ell^2\to\ell^2 Tn:22
T n : ( x 1 , x 2 , ⋯   ) ↦ ( 0 1 , ⋯   , 0 n , x 1 , x 2 , ⋯   ) T_n:(x_1,x_2,\cdots)\mapsto(0_1,\cdots,0_n,x_1,x_2,\cdots) Tn:(x1,x2,)(01,,0n,x1,x2,)
可以验证 T n T_n Tn 为有界线性算子,并且 ∥ T n ∥ = 1 \Vert T_n\Vert=1 Tn=1。是否有 T n T_n Tn 弱收敛到某个 T T T 呢?考虑任意 f ∈ ( ℓ 2 ) ′ f\in(\ell^2)' f(2),都存在唯一的 z ∈ ℓ 2 z\in\ell^2 z2 f ( x ) = ⟨ x , z ⟩ f(x)=\langle x,z\rangle f(x)=x,z,所以 f ( T n x ) = x 1 z n + 1 ‾ + x 2 z n + 2 ‾ + ⋯ f(T_nx)=x_1\overline{z_{n+1}}+x_2\overline{z_{n+2}}+\cdots f(Tnx)=x1zn+1+x2zn+2+,因此
∣ f ( T n x ) ∣ ≤ ∑ k = 1 ∞ ∣ x k ∣ ⋅ ∣ z n + k ∣ ≤ ∥ x ∥ ( ∑ k = n + 1 ∞ ∣ z k ∣ 2 ) 1 / 2 → 0 |f(T_nx)|\le\sum_{k=1}^\infty |x_k|\cdot|z_{n+k}| \le \Vert x\Vert\left(\sum_{k=n+1}^\infty |z_k|^2\right)^{1/2} \to 0 f(Tnx)k=1xkzn+kx(k=n+1zk2)1/20
所以有 f ( T n x ) → 0 f(T_nx) \to 0 f(Tnx)0 对任意 f ∈ ( ℓ 2 ) ′ f\in (\ell^2)' f(2) 成立,因此 f ( T n x ) → f ( T 0 x ) ≡ f ( 0 ) = 0 f(T_nx)\to f(T_0x)\equiv f(0)=0 f(Tnx)f(T0x)f(0)=0。所以 T n T_n Tn 弱收敛到 T 0 = 0 T_0=0 T0=0 算子,但是总有 ∥ T n x ∥ = ∥ x ∥ ↛ 0 \Vert T_nx\Vert=\Vert x\Vert\nrightarrow 0 Tnx=x0,因此 T n x ↛ T 0 x T_nx\nrightarrow T_0x TnxT0x,即不满足强收敛。

命题:对于一般有界线性算子,若 T n T_n Tn 一致收敛 T T T,则 T T T 也是有界的,这是因为 ∥ T ∥ ≤ ∥ T − T n ∥ + ∥ T n ∥ ≤ ∞ \Vert T\Vert\le \Vert T-T_n\Vert+\Vert T_n\Vert \le \infty TTTn+Tn;若只能得到 T n T_n Tn 强收敛 T T T,那么 T T T 不一定是有界的。

例子 6(强收敛极限未必有界): X = Y = { ( x n ) , ∃ N , ∀ n ≥ N , x n = 0 } X=Y=\{(x_n),\exists N,\forall n\ge N, x_n=0 \} X=Y={(xn),N,nN,xn=0},考虑 T n : X → Y T_n:X\to Y Tn:XY
T n : ( x 1 , x 2 , ⋯   ) ↦ ( x 1 , 2 x 2 , ⋯   , n x n , x n + 1 , x n + 2 , ⋯   ) T : ( x 1 , x 2 , ⋯   ) ↦ ( x 1 , 2 x 2 , ⋯   ) \begin{aligned} T_n:& (x_1,x_2,\cdots)\mapsto (x_1,2x_2,\cdots,nx_n,x_{n+1},x_{n+2},\cdots) \\ T:& (x_1,x_2,\cdots)\mapsto (x_1,2x_2,\cdots) \end{aligned} Tn:T:(x1,x2,)(x1,2x2,,nxn,xn+1,xn+2,)(x1,x2,)(x1,2x2,)
那么 ∥ T n ∥ = n \Vert T_n\Vert=n Tn=n,取可以验证对于 ∀ x ∈ X \forall x\in X xX T n x → T x T_nx\to Tx TnxTx,即 T n T_n Tn 强收敛到 T T T,但是 T T T 不是有界算子。

那么什么情况下可以保证强/弱收敛极限也是有界算子呢?

定理:设 X X XBanach 空间 Y Y Y 为赋范空间, T n ∈ B ( X , Y ) , T : X → Y T_n\in B(X,Y),T:X\to Y TnB(X,Y),T:XY 为线性算子。设 T n T_n Tn 弱收敛 T T T,则 sup ⁡ n ≥ 1 ∥ T n ∥ < ∞ , T ∈ B ( X , Y ) \sup_{n\ge1}\Vert T_n\Vert < \infty, T\in B(X,Y) supn1Tn<,TB(X,Y) 并且 ∥ T ∥ ≤ sup ⁡ n ≥ 1 ∥ T n ∥ < ∞ . \Vert T\Vert \le \sup_{n\ge1}\Vert T_n\Vert <\infty. Tsupn1Tn<.

证明:由于 T n T_n Tn 弱收敛到 T T T,即 ∀ x ∈ X , f ∈ Y ′ \forall x\in X,f\in Y' xX,fY 都有 f ( T n x ) → f ( T x ) f(T_nx)\to f(Tx) f(Tnx)f(Tx),因此有 T n x ⟶ w T x T_nx \stackrel{w}{\longrightarrow} Tx TnxwTx。那么根据序列弱收敛的性质,存在 c x c_x cx 满足 sup ⁡ n ∥ T n x ∥ ≤ c x \sup_n \Vert T_nx\Vert \le c_x supnTnxcx,再由一致有界性原理,有 sup ⁡ n ∥ T n ∥ < ∞ \sup_n \Vert T_n\Vert < \infty supnTn<

然后考虑 T T T ∀ x ∈ X \forall x\in X xX,由 Hahn-Banach 定理的推论,都存在 f ∈ Y ′ , ∥ f ∥ = 1 f\in Y',\Vert f\Vert=1 fY,f=1 满足
∥ T x ∥ = ∣ f ( T x ) ∣ = lim ⁡ n → ∞ ∣ f ( T n x ) ∣ ≤ lim ⁡ n → ∞ ∥ T n x ∥ \Vert Tx\Vert=|f(Tx)| = \lim_{n\to\infty} |f(T_nx)| \le \lim_{n\to\infty}\Vert T_nx\Vert Tx=f(Tx)=nlimf(Tnx)nlimTnx
因此 ∥ T ∥ ≤ sup ⁡ n ∥ T n ∥ . \Vert T\Vert\le \sup_n\Vert T_n\Vert. TsupnTn. 证毕。

定理:设 X X XBanach 空间 Y Y Y 为赋范空间, T n , T ∈ B ( X , Y ) T_n,T\in B(X,Y) Tn,TB(X,Y),则 T n T_n Tn 强收敛 T T T 当且仅当

  1. sup ⁡ n ∥ T n ∥ < ∞ \sup_n \Vert T_n\Vert < \infty supnTn<
  2. 存在 M ⊂ X , span M ‾ = X M\subset X,\overline{\text{span}M}=X MX,spanM=X,对 ∀ x ∈ M , T n ( x ) → T ( x ) . \forall x\in M, T_n(x)\to T(x). xM,Tn(x)T(x).

NOTE:这跟线性泛函弱星收敛的等价条件是完全一样的,证明省略。

4. 应用举例

例子 7(求积分的数值方法):考虑实值函数 x ∈ C [ a , b ] x\in C[a,b] xC[a,b],并赋予无穷范数,那么 ( C [ a , b ] , ∥ ⋅ ∥ ) (C[a,b],\Vert\cdot\Vert) (C[a,b],) 为 Banach 空间,求 ∫ a b x ( t ) d t . \int_a^b x(t)dt. abx(t)dt.

既然是在本节举的这个例子,那就要用到算子收敛性。先定义有界线性算子 f ( x ) = ∫ a b x ( t ) d t f(x)=\int_a^b x(t)dt f(x)=abx(t)dt ∥ f ∥ = b − a \Vert f\Vert=b-a f=ba。我们现在的目标就是找一列有界线性泛函 f n f_n fn 弱收敛到 f f f。回忆我们在学微积分的时候,往往是用分段的矩形面积求和来逼近积分。在 [ a , b ] [a,b] [a,b] 上取 n + 1 n+1 n+1 个结点 a = t n , 0 < t n , 1 < ⋯ < t n , n = b a=t_{n,0}<t_{n,1}<\cdots<t_{n,n}=b a=tn,0<tn,1<<tn,n=b,再取 n + 1 n+1 n+1 个实数 a n , 0 , ⋯   , a n , n a_{n,0},\cdots,a_{n,n} an,0,,an,n,令
f n ( x ) = ∑ k = 0 n a n , k x ( t n , k ) f_n(x) = \sum_{k=0}^n a_{n,k} x(t_{n,k}) fn(x)=k=0nan,kx(tn,k)
f n f_n fn C [ a , b ] C[a,b] C[a,b] 上的线性泛函,并且 ∥ f n ∥ ≤ ∑ k = 0 n ∣ a n , k ∣ \Vert f_n\Vert \le \sum_{k=0}^n|a_{n,k}| fnk=0nan,k,另外我们总能够造出一个 x ∈ C [ a , b ] x\in C[a,b] xC[a,b] 满足 x ( t n , k ) = sgn ( a n , k ) x(t_{n,k})=\text{sgn}(a_{n,k}) x(tn,k)=sgn(an,k) 并且 ∥ x ∥ ∞ = 1 \Vert x\Vert_\infty=1 x=1,此时就有 f ( x ) = ∑ k = 0 n ∣ a n , k ∣ f(x)=\sum_{k=0}^n|a_{n,k}| f(x)=k=0nan,k,于是可以得到 ∥ f n ∥ = ∑ k = 0 n ∣ a n , k ∣ \Vert f_n\Vert = \sum_{k=0}^n|a_{n,k}| fn=k=0nan,k。现在的问题就是我们能否找到合适的系数 a n , k a_{n,k} an,k 使得 f n ⟶ w f f_n\stackrel{w}{\longrightarrow} f fnwf

这里我们提出一个额外的要求,就是对于次数小于 n n n 的多项式 p p p,需要 f n ( p ) f_n(p) fn(p) 能获得精确积分结果,即 f n ( p ) = ∫ a b p ( t ) d t f_n(p)=\int_a^b p(t)dt fn(p)=abp(t)dt。由于 { 1 , t , … , t n } \{1,t,\ldots,t^n\} {1,t,,tn} 构成次数小于 n n n 的多项式空间的 Hamel 基,所以只需要验证对每个基有 f n ( e k ) = f ( e k ) f_n(e_k)= f(e_k) fn(ek)=f(ek) 即可。这就要求
{ a n , 0 + a n , 1 + ⋯ + a n , n = b − a a n , 0 t n , 0 + a n , 1 t n , 1 + ⋯ + a n , n t n , n = b 2 − a 2 2 … a n , 0 t n , 0 n + a n , 1 t n , 1 n + ⋯ + a n , n t n , n n = b n + 1 − a n + 1 n + 1 \begin{cases} \begin{matrix} a_{n,0} & + & a_{n,1} & + & \cdots & + & a_{n,n} & = & b-a \\ a_{n,0}t_{n,0} & + & a_{n,1}t_{n,1} & + & \cdots & + & a_{n,n}t_{n,n} & = & \frac{b^2-a^2}{2} \\ & & & & \ldots & \\ a_{n,0}t_{n,0}^n & + & a_{n,1}t_{n,1}^n & + & \cdots & + & a_{n,n}t_{n,n}^n & = & \frac{b^{n+1}-a^{n+1}}{n+1} \end{matrix} \end{cases} an,0an,0tn,0an,0tn,0n+++an,1an,1tn,1an,1tn,1n++++++an,nan,ntn,nan,ntn,nn===ba2b2a2n+1bn+1an+1
上式左侧可以用 Vandermonde 矩阵表示,因此存在唯一解 a n , k , k = 1 , . . . , n a_{n,k},k=1,...,n an,k,k=1,...,n

接下来对于任意的 x ∈ C [ a , b ] x\in C[a,b] xC[a,b],能否找到 a n , k a_{n,k} an,k 满足的条件使得 f n ( x ) → f ( x ) f_n(x)\to f(x) fn(x)f(x) 呢?根据 Stone-Weierstrass 定理,多项式的集合在 C [ a , b ] C[a,b] C[a,b] 中是稠密的,因此对于任意次数 N N N 的多项式 p p p 总有 f n ( p ) → f ( p ) f_n(p)\to f(p) fn(p)f(p)。那么再应用前面的定理(即只需要判断完全集 M ⊂ X M\subset X MX 中的元素是否满足条件即可),可以有如下结论

定理(G.Polya):设数值积分 f n f_n fn 满足前面对于有限次多项式的要求(即 a n , k a_{n,k} an,k 为 Vandermonde 矩阵方程的解)则任取 x ∈ C [ a , b ] , f n ( x ) → f ( x ) x\in C[a,b],f_n(x)\to f(x) xC[a,b],fn(x)f(x) 当且仅当存在常数 C ≥ 0 C\ge0 C0,使得任取 n ≥ 1 n\ge1 n1,有 ∑ k = 1 n a n , k ≤ C . \sum_{k=1}^na_{n,k}\le C. k=1nan,kC.

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
泛函分析笔记 0:绪论
泛函分析笔记 1:度量空间
泛函分析笔记 2:赋范空间
泛函分析笔记 3:内积空间
泛函分析笔记 4:Hahn-Banach定理
泛函分析笔记 5:Hahn-Banach定理的应用
泛函分析笔记 6:一致有界性原理
泛函分析笔记 7:弱收敛与弱星收敛

参考资源链接:[泛函分析笔记:Hahn-Banach 定理凸对偶理论](https://wenku.csdn.net/doc/6401ace0cce7214c316ed786?utm_source=wenku_answer2doc_content) 在Banach空间理论中,*收敛拓扑的一个重要概念,通常涉及到对偶空间的元素。要应用Hahn-Banach定理来确定*收敛序列的极限,首先需要理解*收敛的含义。*收敛是指对于对偶空间B*中的序列{f_n},如果对于B中的每一个元素x,序列{f_n(x)}收敛,则称{f_n}*收敛于某个极限f。此时,根据Hahn-Banach定理,我们可以找到B中的元素x0,使得f(x0) = lim(f_n(x0)),并可以将f_n在x0处的值延拓至整个空间B,而不改变值的极限。 具体来说,Hahn-Banach定理允许我们将定义在子空间上的线性泛函延拓至整个空间,并保持其值不变。因此,在*收敛的情况下,我们可以将f_n的延拓视为在更大的空间上的线性泛函,这样的延拓保持了序列极限的性质。由于Baire分类定理说明了完备度量空间中第一类集合(即在空集中稠密的开集的补集)的补集是第二类集合,即不可能是空集,我们能够利用这一性质来证明*收敛序列的极限确实是泛函空间中的一个点。 为了更深入地理解这一应用,建议阅读《泛函分析笔记:Hahn-Banach定理凸对偶理论》一书。该书不仅详细阐述了Hahn-Banach定理的应用,还深入探讨了拓扑、有界线性算子和谱理论等泛函分析中的核心主题,为理解Banach空间中的*收敛提供了全面的视角和丰富的实例。 参考资源链接:[泛函分析笔记:Hahn-Banach 定理凸对偶理论](https://wenku.csdn.net/doc/6401ace0cce7214c316ed786?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值