秒杀场景的设计思路和方案

本文主要介绍秒杀场景下的系统设计思路和方案。

秒杀活动和其他正常的业务活动相比,具有瞬时流量巨大的特征,所以需要和其他业务进行隔离,并且也需要更多的资源投入才能支撑这样大流量的业务,还需要考虑请求失败情况的处理方案。

image-20230613004940173

进行秒杀设计的重点问题和设计原则有:

  1. 需要进行隔离设计,包括业务隔离、系统隔离、数据隔离;
  2. 需要进行前置的负债均衡和限流处理;
  3. 提前对热点数据进行处理;
  4. 需要考虑失败兜底策略和数据一致性的问题;

一、业务说明

用户视角的业务流程:

image-20230613005743282

运营视角的业务流程:

image-20230613010046219

二、系统架构设计

下图从一次用户秒杀请求来分析会涉及到的部分。

image-20230613011345578

由于秒杀请求流量巨大,须有一般会在服务前端前置Nginx服务器,一个作用是用来做负载均衡,一个作用是用来做反向代理,可以用来实现静态资源服务器。

下一个阶段就来到了web网关服务,这个阶段可以实现常见的认证和鉴权功能,同时也可以进行流量筛选,通过设置黑白名单,可以过滤一部分流量。

下一个节点就是秒杀的业务服务,通常秒杀业务不会是一个服务实例能支撑的,所以在设计的时候要考虑到后续的弹性扩缩容,需要无状态设计。

最后的业务一定是请求到自己业务的数据库或者请求外部服务,针对自己的内部服务,一般会涉及数据库+缓存的支撑或者写入消息中间件进行异步处理,也可能设计服务内的RPC调用,针对外部服务,可能会涉及到HTTP调用。

常见的架构设计:

image-20230613013819854

三、数据隔离策略

由于秒杀业务和普通业务大有不同,为避免其瞬时流量影响到普通业务,所以需要将其进行隔离包括。一般情况下可以从业务、系统、数据层面进行考虑。

业务隔离

为和普通业务区分开,针对秒杀业务一般会有单独的入口也详情页面,对于运营人员来说,也会由单独的秒杀业务提报平台。通过不同的入口来隔离秒杀业务和普通业务。

系统隔离

秒杀业务自身服务需要单独部署,并根据业务流量具有弹性扩缩容的能力,根据实际情况决定是否需要对涉及到的服务也做单独拎出来支持秒杀业务。

数据隔离

主要针对的数据库服务,秒杀是一个多读多写的场景,如果不和其他业务进行数据库层面的隔离,那可能会影响到正常的业务。

四、不同阶段的处理方案

1.秒杀前的处理

预约

从业务角度考虑,在秒杀之前可以引入预约制度,只有预约后的用户才能进行秒杀,这样在进入秒杀前就能拦截一大半的流量,本身用来进行秒杀的商品不会太多,虽然说秒杀的业务价值是广告营销,但吸引一千倍还是一万倍的用户来秒杀其实区别不大。

热点数据预热

秒杀的商品一般固定,其商品详情信息一般也固定,针对秒杀时候的多读情况,可以先进行热点数据的预热,在开启秒杀活动前,将商品详情信息读入到redis中,这样在进行秒杀的时候不至于对数据库造成太大的压力。

2.秒杀中的处理

验证码和限购

在进入秒杀阶段了,流量会在瞬间增长,所以从业务角度来说,可以将这些流量分散开来,避免对服务产生较大的冲击,监控流量过大,可以加入验证码校验这种策略,将流量后移和平滑,可以选择Happy-Captcha进行验证码校验,代码实现如下:

<dependency>
    <groupId>com.ramostear</groupId>
    <artifactId>Happy-Captcha</artifactId>
    <version>1.0.1</version>
</dependency>
  
---------------------------

@RestController
@RequestMapping("/happy-captcha")
public class HappyCaptchaController {
    @GetMapping("/generator")
//    @TokenCheck(required = false)
    public void generatorCode(HttpServletRequest request, HttpServletResponse response){
        HappyCaptcha.require(request, response)
                .style(CaptchaStyle.ANIM)//设置动画
                .type(CaptchaType.ARITHMETIC_ZH)//设置算数验证码
                .build().finish();
    }
    @GetMapping("/verify")
//    @TokenCheck(required = false)
    public String verify(@RequestParam String verifyCode, HttpServletRequest request){
        Boolean aBoolean=HappyCaptcha.verification(request, verifyCode,true);
        if(aBoolean){
            HappyCaptcha.remove(request);
            return "通过";
        }
        return "不通过";
    }
}

除了可以在秒杀之前设置预约环境,还可以没每个用户、每个区域、每个时间点还有每个IP等设置限购,通过这正方式也可以减少秒杀时候用户重复请求。

消息队列异步处理

在技术层面,可以通过消息队列来削减秒杀时候海量请求对系统和数据库造成的压力,先请求到消息队列,通过消息队列的排队和限流机制,来减轻后端的压力,比如在用户下订单的操作上,可以先将订单处理的任务放到消息队列中,再通知下游的多线程来处理。

负载均衡和限流

处理大流量场景单服务实例肯定能是不行的,在秒杀这种情况需要多服务共同支撑,所以选择哪个服务实例处理就需要用到负载均衡,一般会使用负载均衡服务器Nginx在进入系统前进行分流,减轻单实例的压力。

针对于限流处理,这个Nginx也能够实现,这个只是在网关层面的实现,在后面的业务处理中也可以处理,比如通过线程池的排队和消息队列的排队处理等。

可靠性处理

在设计秒杀过程,需要考虑数据一致性的问题,需要进行幂等性设计,防范重复下单导致的数据不一致。

同时需要考虑分布式事务的问题,当出现下单失败的情况,由于订单数据、商品数据、支付数据存在不同的库中,需要同时回滚。

3、秒杀后的处理

主要涉及一些兜底处理方案,包括但流量过大进行的降级和熔断等。

针对秒杀场景,由于价格便宜,肯定会有很多黑产账户来抢购,所以怎么识别正常用户就需要进行风控系统处理。

4.常见问题


TODO

  • 可以写的更详细,针对常见问题进行说明;
<think>好的,我现在需要帮用户解答关于秒杀系统的架构设计实现思路的问题。首先,我得先回顾用户提供的参考资料,里面提到了几个关键点,比如高并发处理、动静分离、库存扣减方案、限流降级等。用户可能希望了解这些方面如何具体实施,以及使用哪些技术。 首先,系统架构设计方面,动静分离是基础。根据引用[3],动静数据分离能提升性能,比如商品详情页的静态数据缓存在CDN,动态数据如库存用Redis处理。这样可以减少后端压力。接着是流量分层过滤,引用[2]提到的技术如网关层限流、验证码机制,这些能有效减少无效请求进入系统。 然后是库存扣减,引用[1][4]都提到了预扣库存异步扣减。这里需要确保原子性操作,可能用Redis的DECR或者Lua脚本。同时,超时未支付库存回滚,可以用RabbitMQ的延迟队列处理。 性能优化方面,缓存异步处理是关键。Redis缓存热点数据,引用[2][3]都提到了。消息队列如RabbitMQ异步处理订单,减轻数据库压力。数据库优化方面,分库分表索引优化也是必要的。 高可用保障措施,比如熔断降级用Sentinel,集群部署弹性扩缩容,这些在引用[2]里都有涉及。另外,前端定时器轮询秒杀结果,如引用[4]所说,前端需要定时查询结果,避免长连接占用资源。 技术选型部分,需要列出各个组件的作用,比如Nacos做服务发现,Redisson分布式锁,SkyWalking监控等。这些技术如何配合使用,确保系统稳定。 最后,用户可能还会关心具体的实现步骤,比如如何设计分层过滤,如何设置限流阈值,库存扣减的具体代码实现等。需要确保回答覆盖了这些方面,同时引用对应的参考资料来支持。 在整理回答时,要保持结构清晰,分点说明,每个部分都结合引用内容,让用户知道这些设计有依据。同时生成的相关问题要引导用户深入思考,比如性能分析、优化方法、应用场景等,这样用户可以有后续的学习路径。</think>### 秒杀系统架构设计与实现思路 #### 一、核心设计原则 1. **动静分离** 将静态数据(如商品描述、图片)与动态数据(如库存、秒杀状态)分离。静态数据通过CDN缓存,动态数据使用Redis缓存,减少数据库压力[^3]。 2. **流量分层过滤** 通过多级拦截机制削减无效请求: - **前端限流**:按钮防重复点击、验证码验证[^2]。 - **网关层限流**:基于Nginx或Spring Cloud Gateway设置QPS阈值。 - **服务层限流**:使用Sentinel或Redis实现令牌桶/漏桶算法[^2]。 3. **异步化处理** 将核心链路(如库存扣减)与次要操作(如订单生成、日志记录)解耦,通过消息队列(如RabbitMQ)异步处理[^4]。 --- #### 二、关键实现方案 1. **库存扣减设计** - **预扣库存**:使用Redis原子操作(`DECR`或Lua脚本)扣减库存,避免超卖。 - **异步落库**:扣减成功后,通过MQ异步更新数据库库存。 - **超时回滚**:未支付订单通过延迟队列回滚库存[^1]。 ```python # 伪代码示例:Redis库存预扣减 def deduct_stock(item_id): key = f"seckill:{item_id}:stock" remaining = redis.decr(key) if remaining >= 0: return "SUCCESS" else: redis.incr(key) # 回滚 return "FAILED" ``` 2. **高性能缓存策略** - **热点数据预热**:提前将秒杀商品信息加载到Redis。 - **本地缓存**:使用Guava Cache缓存高频访问的库存状态。 3. **服务降级与熔断** - 当系统压力超过阈值时,关闭非核心功能(如用户积分计算)。 - 使用Sentinel实现熔断规则,保护下游服务。 --- #### 三、技术栈与组件 | 层级 | 技术选型 | 作用 | |------------|-------------------------|-----------------------------------| | 网关层 | Spring Cloud Gateway | 路由、限流、鉴权 | | 缓存层 | Redis + Redisson | 库存扣减、分布式锁 | | 消息队列 | RabbitMQ | 异步订单处理、延迟队列 | | 监控 | SkyWalking + Prometheus | 全链路性能监控、异常告警 | | 数据库 | MySQL + ShardingSphere | 分库分表、读分离 | --- #### 四、典型业务流程 1. **用户请求流程** 前端请求 → 网关限流 → 验证码校验 → Redis扣库存 → MQ异步生成订单 → 定时轮询结果 2. **库存回滚流程** 订单超时未支付 → MQ触发延迟消息 → Redis库存恢复 → 数据库库存同步 --- #### 五、优化方向 1. **数据预热**:提前加载秒杀商品至缓存,避免缓存击穿。 2. **分布式锁**:使用Redisson实现细粒度锁,避免并发问题[^2]。 3. **链路压测**:通过JMeter模拟高并发场景,优化瓶颈点[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yangnk42

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值