数论 二次剩余模板

本文介绍了数论中的二次剩余概念,详细阐述了如何判断一个数在模P意义下是否为二次剩余,并附带相关证明过程。
摘要由CSDN通过智能技术生成

来自 憨批的博客 ( 2k图片 加载有点慢 需要耐心等待 ) 附带证明 

对于P,n 如果存在x使得 x^2≡ n mod P 则称n是模P意义下的二次剩余

struct T{
    long long p, d;
};

long long Ksm(long long a, long long b, long long p) {
    long long res = 1;
    while(b) {
        if(b & 1) res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}

long long w;
//二次域乘法
T Mul_er(T a, T b, long long p) {
    T ans;
    ans.p = (a.p * b.p + a.d * b.d % p * w % p) % p;
    ans.d = (a.p * b.d % p + a.d * b.p % p) % p;
    return ans;
}
//二次域快速幂
T Ksm_er(T a, long long b, long long p) {
    T ans;
    ans.p = 1; ans.d = 0;
    while(b) {
        if(b & 1) ans = Mul_er(ans, a, p);
        a = Mul_er(a, a, p);
        b >>= 1;
    }
    return ans;
} 
//求勒让德符号
long long Legendre(long long a, long long p) {
    return Ksm(a, (p-1)>>1, p);
}

long long Recever(long long a, long long p) {
    a %= p;
    if(a < 0) a += p;
    return a;
}

long long solve(long long n, long long p) { //求解 x^2=n(mod p) 的x的值
    if(n % p == 0) return 0;
    if(p == 2) return 1;
    if(Legendre(n, p) + 1 == p) return -1;
    long long a = -1, t;
    while(1) {
        a = rand() % p;
        t = a * a - n;
        w = Recever(t, p);
        if(Legendre(w, p) + 1 == p) break;
    }
    T tmp;
    tmp.p = a; tmp.d = 1;
    T ans = Ksm_er(tmp, (p+1)>>1, p);
    return ans.p;
}
ll x = solve(n, p);
x==-1无解,否则
x和p-x都是合法解

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值