组合数 大家应该不陌生
一般我们用杨辉三角性质
杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界)
第n行,第m个就是,就是C(n, m) (从0开始)
递归式模板 时间复杂度是O(n^2)
#include<cstdio>
const int N = 2000 + 5;
const int MOD = (int)1e9 + 7;
int comb[N][N];//comb[n][m]就是C(n,m)
void init(){
for(int i = 0; i < N; i ++){
comb[i][0] = comb[i][i] = 1;
for(int j = 1; j < i; j ++){
comb[i][j] = comb[i-1][j] + comb[i-1][j-1];
comb[i][j] %= MOD;
}
}
}
int main(){
init();
}
因为大部分题目都要求求余,而且大部分都是对1e9+7这个数求余,所以我们可利用逆元的原理(没求余的题目,其实你也可以把MOD自己开的大一点,这样一样可以用逆元做
我们需要求阶乘和逆元阶乘
我们就用1e9+7来求余吧
#include<cstdio>
const int N = 200000 + 5;
const int MOD = (int)1e9 + 7;
int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
void init(){
inv[1] = 1;
for(int i = 2; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[0] = Finv[0] = 1;
for(int i = 1; i < N; i ++){
F[i] = F[i-1] * 1ll * i % MOD;
Finv[i] = Finv[i-1] * 1ll * inv[i] % MOD;
}
}
int comb(int n, int m){//comb(n, m)就是C(n, m) 从n中选择m个
if(m < 0 || m > n) return 0;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main(){
init();
}