题意:给出f(f(f...f(n)...)) 总共嵌套k次。问最后模p的值是多少。
首先应该明白的是这个题有循环节的。一个数模N的循环节就是这个数分解成素因子乘积的形式p1^a1*p2^a2*p3^a3...后,斐波那契模pi^ai的循环节的最大公约数。
那么一个素数的k次幂的循环节=斐波那契模上这个素数的循环节乘上p^(k-1)。
而一个素数p的循环节 如果p>5并且是5的二次剩余,那么循环节就是(p-1)的因子,否则就是2*(p+1)的因子。所以2 3 5 的时候需要特判一下。
知道这些就能求每一次嵌套的循环节了,通过矩阵连乘即可得出答案。
和这道题差不多 https://blog.csdn.net/henucm/article/details/102681157
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
using namespace std;
typedef long long LL;
const int M=2;
struct Matrix
{
LL m[M][M];
};
Matrix per= {1,0,0,1};
Matrix multi(Matrix a,Matrix b,LL MOD)
{
Matrix c;
int i,j,k;
for(i=0; i<M; i++)
{
for(j=0; j<M; j++)
{
c.m[i][j]=0;
for(k=0; k<M; k++)
{
c.m[i][j]+=a.m[i][k]*b.m[k][j]%MOD;
}
c.m[i][j]%=MOD;
}
}
return c;
}
Matrix power(Matrix a,LL k,LL MOD)
{
Matrix ans=per,p=a;
while(k)
{
if(k&1)
{
ans=multi(ans,p,MOD);
k--;
}
k>>=1;
p=multi(p,p,MOD);
}
return ans;
}
LL gcd(LL a,LL b)
{
return b? gcd(b,a%b):a;
}
LL quick_mod(LL a,LL b,LL m)
{
LL ans=1;
a%=m;
while(b)
{
if(b&1)
{
ans=ans*a%m;
b--;
}
b>>=1;
a=a*a%m;
}
return ans;
}
//勒让德符号
int legendre(int a,int p)
{
if(quick_mod(a,(p-1)>>1,p)==1) return 1;
else return -1;
}
const int N=1000005;
const int NN=50005;
bool prime[N];
int p[N];
int num[NN],pri[NN];
int num1[NN],pri1[NN];
int arr[NN];
int loop[N];
int k,cnt,c;
void isprime()
{
k=0;
int i,j;
memset(prime,true,sizeof(prime));
for(i=2; i<N; i++)
{
if(prime[i])
{
p[k++]=i;
for(j=i+i; j<N; j+=i)
{
prime[j]=false;
}
}
}
}
void find(int n,int pri[],int num[])
{
cnt=0;
int t=(int)sqrt(1.0*n);
for(int i=0; p[i]<=t; i++)
{
if(n%p[i]==0)
{
int a=0;
pri[cnt]=p[i];
while(n%p[i]==0)
{
a++;
n/=p[i];
}
num[cnt]=a;
cnt++;
}
}
if(n>1)
{
pri[cnt]=n;
num[cnt]=1;
cnt++;
}
}
void dfs(int dept,int product=1)
{
if(dept==cnt)
{
arr[c++]=product;
return;
}
for(int i=0; i<=num1[dept]; i++)
{
dfs(dept+1,product);
product*=pri1[dept];
}
}
int find_loop(int n)
{
find(n,pri,num);
int cnt1=cnt;
LL ans=1;
for(int i=0; i<cnt1; i++)
{
c=0;
int record=1;
if(pri[i]==2)
record=3;
else if(pri[i]==3)
record=8;
else if(pri[i]==5)
record=20;
else
{
if(legendre(5,pri[i])==1)
find(pri[i]-1,pri1,num1);
else
find(2*(pri[i]+1),pri1,num1);
dfs(0,1);
sort(arr,arr+c);
for(int k=0; k<c; k++)
{
Matrix A;
A.m[0][0]=1;
A.m[0][1]=1;
A.m[1][0]=1;
A.m[1][1]=0;
Matrix a=power(A,arr[k]-1,pri[i]);
int x=(a.m[0][0]+a.m[0][1])%pri[i];
int y=(a.m[1][0]+a.m[1][1])%pri[i];
if(x==1&&y==0)
{
record=arr[k];
break;
}
}
}
for(int k=1; k<num[i]; k++)
record*=pri[i];
ans=ans/gcd(ans,record)*record;
}
return ans;
}
void Solve(int p,int k)
{
loop[0]=p;
for(int i=1; i<=k; i++)
loop[i]=find_loop(loop[i-1]);
}
int work(int n,int k,int p)
{
int t=n;
LL ret,MOD;
Matrix ans;
Matrix A;
A.m[0][0]=1;
A.m[0][1]=1;
A.m[1][0]=1;
A.m[1][1]=0;
Solve(p,k);
for(int i=k; i>=0; i--)
{
MOD=loop[i];
ans=power(A,t,MOD);
ret=(ans.m[1][0]+ans.m[1][1])%MOD;
t=ret;
}
return ret;
}
int main()
{
isprime();
int T,n,k,p,tt=1;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&k,&p);
printf("Case #%d: %d\n",tt++,work(n,k,p));
}
return 0;
}