数论 欧拉函数

欧拉函数的定义:

    在数论中,对于正整数N,少于或等于N ([1,N]),且与N互质的正整数(包括1)的个数,记作φ(n)。

     φ函数的值:

    φ(x)=x(1-1/p(1))(1-1/p(2))(1-1/p(3))(1-1/p(4))…..(1-1/p(n)) 其中p(1),p(2)…p(n)为x的所有质因数;x是正整数; φ(1)=1(唯一和1互质的数,且小于等于1)。注意:每种质因数只有一个。

     例如:

         φ(10)=10×(1-1/2)×(1-1/5)=4;

         1 3 7 9

         φ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;

         φ(49)=49×(1-1/7)=42;

欧拉函数的性质:

(1)   p^k型欧拉函数:

若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。

若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。

(2)mn型欧拉函数

设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。

(3)特殊性质:

若n为奇数时,φ(2n)=φ(n)。

对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理

当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理

 

是不是看不下去 我也是  ╮(╯-╰)╭   直接上板子把!

 

直接求小于或等于n,且与n互质的个数:

#define ll long long
ll lala(ll n)
{
	ll ans=n;
	for(int i=2;i*i<=n;i++)
	{
		if(n%i==0)
		{
			ans=ans/i*(i-1);// φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn) 公式 
			while(n%i==0)
			{
				n/=i;
			}
		}
	}
	if(n>1)
	ans=ans/n*(n-1);
	return ans;
}

哇 好刺激 好厉害 但是如果如果有的题输入数量太多 会超时 那我们需采用打表的方式

 

筛选 求[1,n]之间每个数的质因数的个数:

#include<cstdio>
const int N=100000+5;
int phi[N];
void Euler(){
    phi[1]=1;
    for(int i=2;i<N;i++){
        if(!phi[i]){
            for(int j=i;j<N;j+=i){
                if(!phi[j]) phi[j]=j;
                phi[j]=phi[j]/i*(i-1);
            }
        }
    }
}
int main(){
    Euler();
}

确认过眼神  是眼熟的人 是不是和素数打表很像!

更快的线性筛法

#include<cstdio>
using namespace std;
const int N =1e6+10;
int phi[N], prime[N];
int tot;//tot计数,表示phi[N]中有多少质数 从0开始计数
void Euler(){
    phi[1]=1;
    for(int i=2;i<N;i++){
        if(!phi[i]){
            phi[i]=i-1;
            prime[tot++]=i;
        }
        for(int j=0;j<tot&&1ll*i*prime[j]<N;j++){
            if(i%prime[j])phi[i*prime[j]]=phi[i]*(prime[j]-1);
            else{
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
        }
    }
}
int main(){
    Euler();
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值