欧拉函数的定义:
在数论中,对于正整数N,少于或等于N ([1,N]),且与N互质的正整数(包括1)的个数,记作φ(n)。
φ函数的值:
φ(x)=x(1-1/p(1))(1-1/p(2))(1-1/p(3))(1-1/p(4))…..(1-1/p(n)) 其中p(1),p(2)…p(n)为x的所有质因数;x是正整数; φ(1)=1(唯一和1互质的数,且小于等于1)。注意:每种质因数只有一个。
例如:
φ(10)=10×(1-1/2)×(1-1/5)=4;
1 3 7 9
φ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;
φ(49)=49×(1-1/7)=42;
欧拉函数的性质:
(1) p^k型欧拉函数:
若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。
若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。
(2)mn型欧拉函数
设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。
(3)特殊性质:
若n为奇数时,φ(2n)=φ(n)。
对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理
当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理
是不是看不下去 我也是 ╮(╯-╰)╭ 直接上板子把!
直接求小于或等于n,且与n互质的个数:
#define ll long long
ll lala(ll n)
{
ll ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans=ans/i*(i-1);// φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn) 公式
while(n%i==0)
{
n/=i;
}
}
}
if(n>1)
ans=ans/n*(n-1);
return ans;
}
哇 好刺激 好厉害 但是如果如果有的题输入数量太多 会超时 那我们需采用打表的方式
筛选 求[1,n]之间每个数的质因数的个数:
#include<cstdio>
const int N=100000+5;
int phi[N];
void Euler(){
phi[1]=1;
for(int i=2;i<N;i++){
if(!phi[i]){
for(int j=i;j<N;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
}
int main(){
Euler();
}
确认过眼神 是眼熟的人 是不是和素数打表很像!
更快的线性筛法
#include<cstdio>
using namespace std;
const int N =1e6+10;
int phi[N], prime[N];
int tot;//tot计数,表示phi[N]中有多少质数 从0开始计数
void Euler(){
phi[1]=1;
for(int i=2;i<N;i++){
if(!phi[i]){
phi[i]=i-1;
prime[tot++]=i;
}
for(int j=0;j<tot&&1ll*i*prime[j]<N;j++){
if(i%prime[j])phi[i*prime[j]]=phi[i]*(prime[j]-1);
else{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
}
int main(){
Euler();
}