数论——组合(Lucas定理)

本文介绍了一种使用Lucas定理解决大数组合数计算问题的方法,通过模运算和快速幂计算,有效求解C(n,m)modp的值,适用于n,m较大且p为素数的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

数论——组合(Lucas定理)

题目描述

给出组合数 C(n,m) 表示从 n 个元素中选出 m 个元素的方案数。例如C(5,2)=10,C(4,2)=6。可是当 n,m 比较大的时候,C(n,m) 很大。于是 xiaobo 希望你输出 C(n,m) mod p 的值。

输入描述

输入数据第一行是一个正整数 T,表示数据组数;
接下来是 T 组数据,每组数据有 3 个正整数 n,m,p。

输出描述

对于每组数据,输出一个正整数,表示 C(n,m) mod p 的结果。

示例

输入

2
5 2 3
5 2 61

输出

1
10

备注

对于所有数据,T ≤ 100,1 ≤ m ≤ n ≤ 109,m ≤ 104,m < p < 109,p 是素数。

Lucas 定理
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll mod;

ll quickpower(ll b,ll p)
{
	ll result=1;
	while(p){
		if(p&1){
			result=result*b%mod;
		}
		p>>=1;
		b=b*b%mod;
	}
	return result;
}

ll C(ll n,ll m)
{
	if(n<m){
		return 0;
	}
	ll a=1,b=1;
	for(int i=0;i<m;i++){
		a=a*(n-i)%mod;
		b=b*(i+1)%mod;
	}
	return a*quickpower(b,mod-2)%mod;
}

ll lucas(ll n,ll m)
{
	if(m==0){
		return 1;
	}
	return lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}

int main()
{
	int t;
	ll n,m;
	cin>>t;
	while(t--){
		cin>>n>>m>>mod;
		cout<<lucas(n,m)<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值