DFS

有套路的的模板题(一条路走到黑,再换另一条路)

直接上例题,

九个方向上的深搜



#include<cstdio>
#include <iostream>
char a[110][110];
int m,n;
using namespace std;
void dfs(int x,int y)
{
    if(x<0||x>m-1||y<0||y>n-1||a[x][y]=='.')//第一种方法
        return ;
    a[x][y]='.';
    dfs(x-1, y-1);
    dfs(x, y-1);
    dfs(x+1, y-1);
    dfs(x-1, y);
    dfs(x+1, y);
    dfs(x-1, y+1);
    dfs(x, y+1);
    dfs(x+1, y+1);
    /*还可以这样
     a[x][y]='.';
     for(int i=-1;i<=1;i++)
     {
        for(int j=-1;j<=1;j++)
            {
                int nx=x+i;
                int ny=y+j;
                if(0<nx&&nx<m&&0<ny&&ny<n&&a[x][y]=='W')
                    dfs(nx,ny);
            }
     }*/
}
int main()
{
    int i,j,ans=0;
    scanf("%d%d",&m,&n);
    for (i=0; i<m; i++)
    {
        for (j=0; j<n; j++)
        {
            cin>>a[i][j];//scanf("%c",&a[i][j]);
        }
    }
    for (i=0; i<m; i++)
    {
        for(j=0;j<n;j++)
        {
            if(a[i][j]=='W')
                ans++;//需要深搜一次就加1一次
                dfs(i,j);
        }
    }
    printf("%d\n",ans);
    return 0;
}

四个方向上的深搜



#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
int m,n,flag;
char a[510][510];
int b[510][510];
int ax[4]={0,0,1,-1};
int ay[4]={1,-1,0,0};
int dfs(int i,int j)
{
	b[i][j]=1;	//标记是否访问过
	for(int k=0;k<4;k++)//四个方向
	{
		int dx=i+ax[k];
		int dy=j+ay[k];
		if(a[dx][dy]=='t')
		{
		flag=1;
		return 0;
		}
		else if(0<=dx&&dx<m&&0<=dy&&dy<n&&a[dx][dy]=='.'&&b[dx][dy]==0)//在有效范围内
		{
			b[dx][dy]=1;
			dfs(dx,dy);
		}
		else
		continue;
	}
	return 0;
}
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
			int x=0,y=0;
		flag=0;
	memset(b,0,sizeof(b));
		
		cin>>m>>n;
		for(int i=0;i<m;i++)
		{
			for(int j=0;j<n;j++)
			{
			cin>>a[i][j];
			if(a[i][j]=='s')//从s开始t结束
				{ 
				x=i;
				y=j;
				} 
			}
		}
	dfs(x,y);
		if(flag==1)
		printf("YES\n");
		else
		printf("NO\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值