自己做量化交易软件(25)小白量化用户Python代码编辑器

117 篇文章 124 订阅
115 篇文章 108 订阅

自己做量化交易软件(25)小白量化用户Python代码编辑器
在量化软件设计中,经常会需要用户编写Python策略代码,因此需要在量化软件中有代码编辑器的功能。
我们想实现下图那样的功能,使用小白量化框架提供的模块很容易。
在这里插入图片描述
这里需要使用小白新一代中的HP_tk.py模块。下面直接给出全部源代码,源代码中有注释。

#小白量化用户Python代码编辑器
#独狼荷蒲qq:2886002
#通通小白python量化群:524949939
#微信公众号:独狼股票分析
import  tkinter  as  tk   #导入Tkinter
import  tkinter.ttk  as  ttk   #导入Tkinter.ttk
import  HP_tk  as  htk   #导入htk
from PIL import Image, ImageTk, ImageDraw, ImageFont

#建立主窗口
root=htk.MainWindow(title='小白的Python编辑器',x=100,y=200,w=800, h=600)
root.iconbitmap('ico/py.ico')  #设置应用程序图标
root.SetCenter()  #移动到屏幕中央

#建立菜单
menus = [['文件',['执行程序','-','新建','打开','运行','-','保存','另存为']],\
         ['编辑',['撤销','重做','-','剪切','复制','粘贴','清除','-','全选']],\
         ['显示',['绘图','表格']],\
         ['程序',['运行','编译']],\
         ['帮助',['关于软件','退出']]]

mainmenu=htk.windowMenu(root,menus) #窗口菜单
png= ImageTk.PhotoImage(Image.open('ico/16x16/3.ICO'))



#建立工具栏
toolsbar=htk.ToolsBar(root,5) #创建工具栏
toolsbar.pack(side=tk.TOP, fill=tk.X)   #把工具栏放到窗口顶部
png1= ImageTk.PhotoImage(Image.open('ico/New2.ico'))
png2= ImageTk.PhotoImage(Image.open('ico/FOLDER03.ICO'))
png3= ImageTk.PhotoImage(Image.open('ico/DISK04.ICO'))
png4= ImageTk.PhotoImage(Image.open('ico/clxokcnhlp1.ico'))
png5= ImageTk.PhotoImage(Image.open('ico/GRAPH07.ICO'))
#改变工具栏的图标
toolsbar.config(0,image=png1)
toolsbar.config(1,image=png2)
toolsbar.config(2,image=png3)
toolsbar.config(3,image=png4)
toolsbar.config(4,image=png5)

#建立状态栏
status=htk.StatusBar(root)    #建立状态栏
status.pack(side=tk.BOTTOM, fill=tk.X) #把状态栏放到窗口底部
status.clear()
status.text(0,'状态栏') #在状态栏1输出信息
status.text(1,'超越自我!') #在状态栏2输出信息
status.text(2,'超越!是我们的每一步!')
status.text(3,'版权所有')
status.text(4,'侵权必究')
status.text(5,'设计:小白')
status.config(1,color='red') #改变状态栏2信息颜色
status.config(3,color='green') #改变状态栏2信息颜色
status.config(4,color='blue') #改变状态栏2信息颜色
#status.config(5,width=5)   #改变状态栏6的宽度

#建立代码编辑器
myedit=htk.useredit(root)
myedit.pack()

#为工具栏按钮设置命令
toolsbar.config(0,command=myedit.newfile)    #新文件
toolsbar.config(1,command=myedit.openfile)   #打开文件
toolsbar.config(2,command=myedit.savefile)   #保存文件
toolsbar.config(3,command=myedit.saveas)     #另存文件
toolsbar.config(4,command=myedit.runuc)      #运行程序

root.mainloop()  	#进入Tkinter消息循环

程序运行结果如下图。
在这里插入图片描述
京东、淘宝、当当网购买<零基础搭建量化投资系统――以Python为工具>正版书,加入读者群,群文件下载小白新一代量化系统源代码。

Python量化交易是一个应用了计算机语言(特别是Python)来进行金融数据处理、策略开发、回测以及实时交易的过程。它结合了数据分析、算法设计、数学模型、金融理论等知识领域,能够帮助交易者更高效地分析市场趋势,构建投资策略,并通过自动化执行交易指令。 安装Python及其环境: 1. **安装Python**: 首先需要下载并安装最新版本的Python。访问Python官方网站 (https://www.python.org/downloads/) 下载适合您操作系统的版本,推荐安装3.x系列的最新稳定版。 2. **安装IDE**: 对于编写和运行Python代码,您可以选择合适的集成开发环境(IDE)。例如: - PyCharm:专业级别的Python IDE,支持Django、Flask和其他Python库。 - Jupyter Notebook:非常适合交互式代码编辑和数据可视化。 - Visual Studio Code:轻量级编辑器,插件丰富,可以用于编写Python代码。 3. **安装量化交易相关的库**: Python量化交易依赖于一些特定的库。以下是几个常用的库及它们的基本用途: - **pandas**:数据结构与数据操作工具,非常适合时间序列数据处理和数据分析。 - **NumPy**:用于科学计算的基础库,提供高效的数值运算功能。 - **Matplotlib**:绘图库,用于生成图表和可视化结果。 - **SciKit-Learn**:机器学习库,可用于预测模型的训练和评估。 - **TA-Lib**:技术分析库,包括各种指标函数,如移动平均线、RSI等。 - **backtrader**:一个流行的量化交易平台,提供策略设计、回溯测试和实盘交易的功能。 4. **安装步骤**: 使用pip命令安装上述库。打开命令行界面(如cmd或终端),然后输入相应的pip命令: ``` pip install pandas numpy matplotlib scikit-learn ta backtrader ``` 5. **配置环境变量**: 确保您的Python环境和相关库已经成功安装。这通常意味着您可以在命令行中直接运行上述pip命令,而不会收到错误信息。 6. **实践示例**: 接下来,您可以尝试从零开始编写简单的量化交易脚本。比如,使用pandas读取股票价格数据,利用TA-Lib添加技术指标,最后设计一个基于这些指标的简单交易策略。 7. **进一步的学习资源**: - 查阅官方文档和教程。 - 参加在线课程和研讨会。 - 加入Python量化交易社区,如GitHub、Stack Overflow和Reddit等平台上的相关论坛。 以上步骤将帮助您搭建好Python量化交易的基础环境,并准备好进行深入学习和实践。当然,在实际交易前,务必充分了解风险控制和合规要求。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荷蒲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值