一、题目描述
给定整数 n 和 k,返回 [1, n] 中字典序第 k 小的数字。
示例 1:
输入: n = 13, k = 2
输出: 10
解释: 字典序的排列是 [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9],所以第二小的数字是 10。
示例 2:
输入: n = 1, k = 1
输出: 1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
二、解题
字典树
这题首先看386题。这题找第k小的数字,其实就是在树中找每个节点的子节点数量,然后与K值相比较。
其中以第一层第一个节点1计算,看以1为节点的下面有多少个子节点。若当前节点的子节点数大于K,则说明目标值就在该子树下面,然后一层一层往下面找,更新节点值,1->10,也需要更新K值,也就是第二次的第一个数0,然后计算该0下面有多少个子节点值,不停的执行,直到找到最终的值。
若当第一层的第一个节点1值下面的子节点的数量小于K值,说明在节点2下面找,更新K值,依次执行。
如果就在第一层的第一个节点下面,就依次每层往下找;
class Solution {
public int findKthNumber(int n, int k) {
long cur = 1;
k--;
while(k > 0){
int nodes = countNodes(n,cur);
if(k >= nodes){
k = k - nodes;
cur++;
}else{
k--;
cur *= 10;
}
}
return (int) cur;
}
public int countNodes(long n,long cur){
long total = 0;
long next = cur + 1;
while(cur <= n){
total += Math.min(n - cur + 1,next -cur);
cur *= 10;
next *= 10;
}
return (int) total;
}
}
注释:
class Solution {
public int findKthNumber(int n, int k) {
/*
参考评论区郭郭的视频题解:
本质是一个10叉树的先序遍历,找到按照先序遍历的第k个节点
为什么是先序遍历?这个由字典序的性质决定:[1,10,100,1000,1001]
假设相同位数的数字在10叉树的同一层上,那么就是先序遍历就是字典序排列
从cur=1开始进行遍历,先计算的以cur为根的且<=n的节点个数nodes
若nodes<=k,说明以cur开头的合格节点数不够,cur应该向右走:cur++
若nodes>k,说明以cur开头的合格节点数足够,cur应该向下走:cur*=10
*/
// 首先遍历以1开头大的数字
// 由于cur可能会很大,因此int可能计算过程中会溢出,用long类型
long cur = 1;
// 因为1遍历了,因此k--
k--;
// 当且仅当k>0(还未遍历到第k个的时候)循环
while(k > 0) {
// 获取以cur开头的子节点合格(<=n)数目nodes
int nodes = getNodes(n, cur);
// 若nodes<=k的话说明把这nodes个节点分完都还没到k
if(nodes <= k) {
// cur向右走
cur++;
// 抵消掉nodes个节点
k -= nodes;
}else {
// 若nodes>k的话说明把nodes个节点够分
// cur往下走
cur *= 10;
// 将cur计算进k
k--;
}
}
// 最后cur会停留在第k小的数上
return (int)cur;
}
/*
计算[1,n]内以cur为根(开头)的节点个数
*/
private int getNodes(int n, long cur) {
// next表示cur右边的数,此时cur=10,next=11
long next = cur + 1;
// 统计合格的节点个数
long totalNodes = 0;
// 当cur<=n时可以进入循环
while(cur <= n) {
// 这里是最关键的一步:当n不在cur层时,该层有效节点数目为next - cur(全部都要了)
// 当n在cur层时,该层有效节点数目为n - cur + 1(要一部分)
// 统一起来就是取最小值
totalNodes += Math.min(n - cur + 1, next - cur);
// cur与next均向下计算
cur *= 10;
next *= 10;
}
return (int)totalNodes;
}
}
输出测试一下:
代码:
class Solution {
public int findKthNumber(int n, int k) {
long cur = 1;
k--;
System.out.println("0->k:"+k);
while(k > 0){
int nodes = countNodes(n,cur);
System.out.println("nodes:"+nodes);
if(k >= nodes){
k = k - nodes;
System.out.println("1->k:"+k);
cur++;
System.out.println("1->cur:"+cur);
}else{
k--;
System.out.println("2->k:"+k);
cur *= 10;
System.out.println("2->cur:"+cur);
}
}
return (int) cur;
}
public int countNodes(long n,long cur){
long total = 0;
long next = cur + 1;
while(cur <= n){
//计算每一层的节点数,然后统计初始cur值下小于n的节点数
total += Math.min(n - cur + 1,next -cur);
System.out.println("total:"+total);
cur *= 10;
next *= 10;
}
return (int) total;
}
}
0->k:65
total:1
total:11
total:35
nodes:35
1->k:30
1->cur:2
total:1
total:11
nodes:11
1->k:19
1->cur:3
total:1
total:11
nodes:11
1->k:8
1->cur:4
total:1
total:11
nodes:11
2->k:7
2->cur:40
total:1
nodes:1
1->k:6
1->cur:41
total:1
nodes:1
1->k:5
1->cur:42
total:1
nodes:1
1->k:4
1->cur:43
total:1
nodes:1
1->k:3
1->cur:44
total:1
nodes:1
1->k:2
1->cur:45
total:1
nodes:1
1->k:1
1->cur:46
total:1
nodes:1
1->k:0
1->cur:47
分析:第一层第一个节点1的子节点数量为35,小于K值,则继续在节点2中查找,更新k值为30,然后节点2值下面的子节点数量为11,小于30,则继续在节点3中查找,然后更新K值为19,依次进行